• 제목/요약/키워드: i-NOS

검색결과 1,813건 처리시간 0.027초

Various Physiological and Anti-inflammatory Effects of Sanguisorba officinalis L. Roots as a Functional Cosmetic Material (기능성 화장품 소재로써 오이풀 뿌리(Sanguisorba officinalis L. roots)의 다양한 생리 활성 및 항염증 효과)

  • Seung-Mi Park;Min-Jeong Oh;Hyeon-Ji Yeom;Mi-Ock Shim;Jin-Young Lee
    • Journal of Life Science
    • /
    • 제33권5호
    • /
    • pp.406-413
    • /
    • 2023
  • In this study, the various physiological and anti-inflammatory activities of Sanguisorba officinalis L. roots (SR) were assessed for potential use as functional cosmetic materials. As a result of measuring electron-donating abilities to determine the antioxidant ability of SR extract, activity increased as the concentration increased, showing an excellent antioxidant capacity of 93.8% at a 1,000 ㎍/ml concentration. Further, the antioxidant power of SR extract, which was determined using an ABTS+ assay measurement, was more than 99% at concentrations of 50 ㎍/ml or more, while the tyrosinase inhibition rate was 37.7% at the highest concentration of 1,000 ㎍/ml. Consequently, the elastase and collagenase inhibition of SR extract measured 84.9% and 90.3%, respectively, at a 1,000-㎍/ml concentration. As a result of confirming the survival rate of Raw 264.7 cells, the cell survival rate was determined to be 80% or more below a 100 ㎍/ml concentration, and subsequent cell-related experiments were conducted at concentrations below 100 ㎍/ml. Furthermore, after applying a NO assay to identify anti-inflammatory activity, it was confirmed that SR extract had an inhibitory rate of 50.8% at a concentration of 500 ㎍/ml, and it was excellent at suppressing the inflammatory expression. As a result of verifying protein expression by treating SR extract in Raw 264.7 cells, it was confirmed that expression was inhibited concentrated in all factors. Therefore, it is judged that SR can be used as a functional cosmetic material with antioxidant, whitening, and wrinkle-improving physiological effects and anti-inflammatory activities.

Promotion effects of steam-dried Betula platyphylla extract on hair regrowth (자작나무 증포 추출물의 발모 촉진 효과)

  • Ahn, Jeong Won;Jang, Su Kil;Jo, Bo Ram;Kim, Hyun Soo;Jeoung, Eui Young;Hillary, Kithenya;Yoo, Yeong Min;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • 제54권1호
    • /
    • pp.43-51
    • /
    • 2022
  • Regulation of the hair follicle cycle in association with dermal papilla cells is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether steam-dried Betula platyphylla extracts (BPE) promote hair growth by upregulating in vitro and in vivo responses of dermal papilla cells. The data showed that BPE3 contained high amounts of phenolic compounds with higher antioxidant effects and increased hair growth-related genes, including fibroblast growth factor7 and Wnt7b, in dermal papilla cells. Notably, BPE3 effectively enhanced the formation of hair follicles by increasing FGF7, Wnt7b, and vascular endothelial growth factor in C57BL/6N dorsal skins. Additionally, BPE3 significantly decreased the expression of inflammatory repertoires, inducible nitric oxide synthase, interleukin-6, and cyclooxygenase 2. Several small molecules, such as betulin and unsaturated fatty acids, support the pharmacological activity of BPE3. In conclusion, BPE3 effectively promoted hair growth by activating dermal papilla cells and enhancing hair follicle cycles by attenuating the inflammatory environment in the scalp.

In vitro Antioxidant and Anti-Inflammatory Activities of Ethanol Extract and Sequential Fractions of Flowers of Prunus persica in LPS-Stimulated RAW 264.7 Macrophages (복숭아꽃 에탄올 추출물과 분획물의 in vitro 항산화 효과 및 RAW 264.7 대식세포에서의 항염증 효과)

  • Kwak, Chung Shil;Choi, Hye-In
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제44권10호
    • /
    • pp.1439-1449
    • /
    • 2015
  • Prunus persica Flos (PPF) were investigated for their antioxidant and anti-inflammatory activities to find a natural functional food resource preventing degenerative diseases associated with excessive oxidative stress and chronic inflammation. PPF was extracted using ethanol (EtOH) and then sequentially fractioned by hexane (Hx), dichloromethane (DM), ethyl acetate (EA), n-butanol (BtOH), and water (DW). Contents of total phenolics and flavonoids, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2, and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-${\alpha}$ production were also measured using LPS-treated RAW 264.7 macrophages. EtOH extract showed relatively high antioxidant activity with high total phenolic (78.1 mg tannic acid/g) and flavonoid contents (55.3 mg rutin/g). EA fraction contained the highest total phenolic and flavonoid contents (394.6 mg tannic acid/g, 253.7 mg rutin/g), followed by BtOH (128.3 mg tannic acid/g, 93.1 mg rutin/g). EA and BtOH fractions and EtOH extract showed higher DPPH radical and ABTS radical scavenging activities than the others (P<0.05). In LPS-treated RAW 264.7 macrophages, EtOH extract ($200{\mu}g/mL$) showed significantly reduced (P<0.05) NO, PGE2, and TNF-${\alpha}$ production levels to 38.5%, 32.3%, and 48.9% of the control, respectively, as well as reduced iNOS and COX-2 protein expression. DM fraction ($50{\mu}g/mL$) showed significantly reduced (P<0.05) NO, PGE2, IL-6, and TNF-${\alpha}$ production levels to 43.5%, 13.3%, 38.7%, and 41.3% of the control, respectively, and EA fraction ($50{\mu}g/mL$) showed significantly reduced NO, PGE2, IL-6, and TNF-${\alpha}$ production levels to 44.8%, 22.4%, 45.7%, and 62.0% of the control, respectively. Taken together, EtOH extract of PPF showed potent antioxidant and anti-inflammatory activities, and EA and BtOH fractions showed comparatively stronger antioxidant activities while DM and EA fractions showed stronger anti-inflammatory activities. It can be concluded that EtOH extract of PPF and its fractions are good candidates as natural resources for the development of anti-oxidative and anti-inflammatory functional food products.