• 제목/요약/키워드: hysteretic performance

검색결과 373건 처리시간 0.023초

계열연상능력에 미치는 히스테리시스 특성에 대한 해석 (Analysis of the effects of the hysteretic property on the performance of sequential associative neural nets)

  • 김응수;이상욱
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.448-459
    • /
    • 2012
  • 신경회로망의 동작과 정보처리 능력 등에 관하여 살펴보고자 할 때, 신경회로망의 구성 요소를 어떻게 모델화 할 것인가는 중요한 문제이다. 소자의 응답특성이 바뀜에 따른 특성의 변화, 결합강도 및 적응규칙이 바뀜으로써 회로망 전체의 다이나믹스가 바뀌는 모습, 소자 상호간의 결합 형태에 따른 정보처리 능력의 변화 등과 같은 신경회로망이 가진 다양한 정보처리 능력을 밝히는 것은 병렬 정보처리의 메카니즘을 이해하는 문제와도 일맥상통하고 있다. 따라서 이러한 문제들에 대하여 신경회로망의 정보처리 능력을 해석적으로 평가하는 것은 병렬분산 정보처리의 본질을 밝힌다는 측면에서 중요하게 여겨진다. 따라서 본 논문에서는 신경회로망을 구성하는 구성요소의 변화, 그 가운데에서도 특히 소자의 히스테리시스 특성이 신경망의 계열연상능력에 미치는 영향에 대한 이론적 해석결과에 대하여 기술한다.

Behaviour of lightweight aggregate concrete-filled steel tube under horizontal cyclic load

  • Fu, Zhongqiu;Ji, Bohai;Wu, Dongyang;Yu, Zhenpeng
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.717-729
    • /
    • 2019
  • A horizontal cyclic test was carried out to study the seismic performance of lightweight aggregate concrete filled steel tube (LACFST). The constitutive and hysteretic model of core lightweight aggregate concrete (LAC) was proposed for finite element simulation. The stress and strain changes of the steel tube and concrete filled inside were measured in the experiment, and the failure mode, hysteresis curve, skeleton curve, and strain curve of the test specimens were obtained. The influence of axial compression ratio, diameter-thickness ratio and material strength were analysed based on finite element model. The results show that the hysteresis curve of LACFST indicated favourable ductility, energy dissipation, and seismic performance. The LACFST failed when the concrete in the bottom first crushed and the steel tube then bulged, thus axial force imposed by prestressing was proved to be feasible. The proposed constitutive model and hysteretic model of LAC under the constraint of its steel tube was reliable. The bearing capacity and ductility of the specimen increase significantly with increasing thickness of the steel tube. The bearing capacity of the member improves while the ductility and energy dissipation performance slightly decreased with the increasing strength of the steel and concrete.

Experimental investigation on the seismic performance of cored moment resisting stub columns

  • Hsiao, Po-Chien;Lin, Kun-Sian
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.353-366
    • /
    • 2021
  • Cored moment resisting stub column (CMSC) was previously developed by the features of adopting a core segment which remains mostly elastic and reduced column section (RCS) details around the ends to from a stable hysteretic behavior with large post-yield stiffness and considerable ductility. Several full-scale CMSC components with various length proportions of the RCSs with respect to overall lengths have been experimentally investigated through both far-field and near-fault cyclic loadings followed by fatigue tests. Test results verified that the proposed CMSC provided very ductile hysteretic responses with no strength degradation even beyond the occurrence of the local buckling at the side-segments. The effect of RCS lengths on the seismic performance of the CMSC was verified to relate with the levels of the deformation concentration at the member ends, the local buckling behavior and overall ductility. Estimation equations were established to notionally calculate the first-yield and ultimate strengths of the CMSC and validated by the measured responses. A numerical model of the CMSC was developed to accurately capture the hysteretic performance of the specimens, and was adopted to clarify the effect of the surrounding frame and to perform a parametric study to develop the estimation of the elastic stiffness.

Study of nonlinear hysteretic modelling and performance evaluation for piezoelectric actuators based on activation functions

  • Xingyang Xie;Yuguo Cui;Yang Yu
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.133-143
    • /
    • 2024
  • Piezoelectric (PZT) actuators have been widely used in precision positioning fields for their excellent displacement resolution. However, due to the inherent characteristics of piezoelectric actuators, hysteresis has been proven to greatly reduce positioning performance. In this paper, five mathematical hysteretic models based on activation function are proposed to characterize the nonlinear hysteresis characteristics of piezoelectric actuators. Then the performance of the proposed models is verified by particle swarm optimization (PSO) algorithm and the experiment data. Thirdly, the fitting performance of the proposed models is compared with the classical Bouc-Wen model. Finally, the performance of the five proposed models in modelling hysteresis nonlinearity of piezoelectric drivers is compared, in terms of RMSE, MAPE, SAPE and operation efficiency, and relevant suggestions are given.

Performance-based seismic design of reinforced concrete ductile buildings subjected to large energy demands

  • Teran-Gilmore, Amador;Sanchez-Badillo, Alberto;Espinosa-Johnson, Marco
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.69-91
    • /
    • 2010
  • Current seismic design codes do not contemplate explicitly some variables that are relevant for the design of structures subjected to ground motions exhibiting large energy content. Particularly, the lack of explicit consideration of the cumulative plastic demands and of the degradation of the hysteretic cycle may result in a significant underestimation of the lateral strength of reinforced concrete structures built on soft soils. This paper introduces and illustrates the use of a numerical performance-based methodology for the predesign of standard-occupation reinforced concrete ductile structures. The methodology takes into account two limit states, the performance of the non-structural system, and in the case of the life safety limit state, the effect of cumulative plastic demands and of the degradation of the hysteretic cycle on the assessment of structural performance.

Demands and distribution of hysteretic energy in moment resistant self-centering steel frames

  • Lopez-Barraza, Arturo;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Bojorquez, Eden
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1155-1171
    • /
    • 2016
  • Post-tensioned (PT) steel moment resisting frames (MRFs) with semi-rigid connections (SRC) can be used to control the hysteretic energy demands and to reduce the maximum inter-story drift (${\gamma}$). In this study the seismic behavior of steel MRFs with PT connections is estimated by incremental nonlinear dynamic analysis in terms of dissipated hysteretic energy ($E_H$) demands. For this aim, five PT steel MRFs are subjected to 30 long duration earthquake ground motions recorded on soft soil sites. To assess the energy dissipated in the frames with PT connections, a new expression is proposed for the hysteretic behavior of semi-rigid connections validated by experimental tests. The performance was estimated not only for the global $E_H$ demands in the steel frames; but also for, the distribution and demands of hysteretic energy in beams, columns and connections considering several levels of deformation. The results show that $E_H$ varies with ${\gamma}$, and that most of $E_H$ is dissipated by the connections. It is observed in all the cases a log-normal distribution of $E_H$ through the building height. The largest demand of $E_H$ occurs between 0.25 and 0.5 of the height. Finally, an equation is proposed to calculate the distribution of $E_H$ in terms of the normalized height of the stories (h/H) and the inter-story drift.

New three-layer-type hysteretic damper system and its damping capacity

  • Kim, Hyeong Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.821-838
    • /
    • 2012
  • This paper proposes a new three-layer pillar-type hysteretic damper system for residential houses. The proposed vibration control system has braces, upper and lower frames and a damper unit including hysteretic dampers. The proposed vibration control system supplements the weaknesses of the previously proposed post-tensioning vibration control system in the damping efficiency and cumbersomeness of introducing a post-tension. The structural variables employed in the damper design are the stiffness ratio ${\kappa}$, the ductility ratio ${\mu}_a$, and the ratio ${\beta}$ of the damper's shear force to the maximum resistance. The hysteretic dampers are designed so that they exhibit the targeted damping capacity at a specified response amplitude. Element tests of hysteretic dampers are carried out to examine the mechanical property and to compare its restoring-force characteristic with that of the analytical model. Analytical studies using an equivalent linearization method and time-history response analysis are performed to investigate the damping performance of the proposed vibration control system. Free vibration tests using a full-scale model are conducted in order to verify the damping capacity and reliability of the proposed vibration control system. In this paper, the damping capacity of the proposed system is estimated by the logarithmic decrement method for the response amplitudes. The accuracy of the analytical models is evaluated through the comparison of the test results with those of analytical studies.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Effect of stiffener arrangement on hysteretic behavior of link-to-column connections

  • Zarsav, Saman;Zahrai, Seyed Mehdi;Oskouei, Asghar Vatani
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.1051-1064
    • /
    • 2016
  • Link-to-column connections in Eccentrically Braced Frames (EBFs) have critical role in their safety and seismic performance. Accordingly, in this study, contribution of supplemental stiffeners on hysteretic behavior of the link-to-column connection is investigated. Considered stiffeners are placed on both sides and parallel to the link web between the column face and the first stiffener of the link. Hysteretic behaviors of the link beams with supplemental stiffeners are numerically investigated using a pre-validated numerical model in ANSYS. It turned out that supplemental stiffeners can change energy dissipation mechanism of intermediate links from shear-flexure to shear. Both rectangular and trapezoidal supplemental stiffeners are studied. Moreover, optimal placement of the supplemental stiffeners is also investigated. Obtained results indicate a discrepancy of less than 9% in maximum link shear of the numerical and experimental specimens. This indicates that the numerical results are in good agreement with those obtained from the test. Trapezoidal supplemental stiffeners improve rotational capacity of the link. Moreover, use of two supplemental stiffeners at both ends of the link can more effectively improve hysteretic behavior of intermediate links. Supplemental stiffeners would also alleviate the imposed demands on the connections. This latter feature is more pronounced in the case of two supplemental stiffeners at both ends of the link.

Seismic reliability analysis of structures based on cumulative damage failure mechanism

  • Liu, Qiang;Wang, Miaofang
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.519-526
    • /
    • 2020
  • Non-stationary random seismic response and reliability of multi-degree of freedom hysteretic structure system are studied based on the cumulative damage failure mechanism. First, dynamic Eqs. of multi-degree of freedom hysteretic structure system under earthquake action are established. Secondly, the random seismic response of a multi-degree freedom hysteretic structure system is investigated by the combination of virtual excitation and precise integration. Finally, according to the damage state level of structural, the different damage state probability of high-rise frame structure is calculated based on the boundary value of the cumulative damage index in the seismic intensity earthquake area. The results show that under the same earthquake intensity and the same floor quality and stiffness, the lower the floor is, the greater the damage probability of the building structure is; if the structural floor stiffness changes abruptly, the weak layer will be formed, and the cumulative damage probability will be the largest, and the reliability index will be relatively small. Meanwhile, with the increase of fortification intensity, the reliability of three-level structure fortification is also significantly reduced. This method can solve the problem of non-stationary random seismic response and reliability of high-rise buildings, and it has high efficiency and practicability. It is instructive for structural performance design and estimating the age of the structure.