• 제목/요약/키워드: hysteretic numerical model

검색결과 131건 처리시간 0.026초

Nonlinear identification of Bouc-Wen hysteretic parameters using improved experience-based learning algorithm

  • Luo, Weili;Zheng, Tongyi;Tong, Huawei;Zhou, Yun;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.101-114
    • /
    • 2020
  • In this paper, an improved experience-based learning algorithm (EBL), termed as IEBL, is proposed to solve the nonlinear hysteretic parameter identification problem with Bouc-Wen model. A quasi-opposition-based learning mechanism and new updating equations are introduced to improve both the exploration and exploitation abilities of the algorithm. Numerical studies on a single-degree-of-freedom system without/with viscous damping are conducted to investigate the efficiency and robustness of the proposed algorithm. A laboratory test of seven lead-filled steel tube dampers is presented and their hysteretic parameters are also successfully identified with normalized mean square error values less than 2.97%. Both numerical and laboratory results confirm that, in comparison with EBL, CMFOA, SSA, and Jaya, the IEBL is superior in nonlinear hysteretic parameter identification in terms of convergence and accuracy even under measurement noise.

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng;Huang, Huan;Ma, Haitao;Xu, Rui
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.119-139
    • /
    • 2014
  • A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

철근콘크리트 부재의 해석적 이력모델 (Analytic Hysteretic Model of Reinforced Concrete Members)

  • 정영수
    • 전산구조공학
    • /
    • 제4권1호
    • /
    • pp.133-142
    • /
    • 1991
  • 지진하중과 유사한 반복하중에 의한 철근 콘크리트 부재의 실제 거동을 재생키 위한 해석적인 이력모델을 제시하였다. 특히 RC부재의 동적거동의 중요한 현상들인 강성저하, 강도저하 그리고 전단영향등의 해석 모델을 소개하였으며 제안된 이력모델의 정확성 및 사용성등의 평가를 위하여 실험결과의 하중-변위 곡선들과 비교 분석하였다.

  • PDF

A numerical approach for simulating the behaviour of timber shear walls

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.383-407
    • /
    • 2012
  • A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

단자유도 시스템에 대한 이력이점성 모델을 사용한 MR감쇠기 변수 연구 (Parametric Study on SDOF System with MR Damper Using Hysteretic Biviscous Model)

  • 이상현;민경원;이루지;김대곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.27-33
    • /
    • 2004
  • In this paper, various dynamic model of magnetorheological (MR) damper, is required for describing the hysteresis of MR damper and for their application are investigated to structural control. The dynamic characteristics and control effects of the modeling methods for MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc-Wen, Bouc-Wen with mass element and phenomenological models are studied. Of these models, hysteretic biviscous model which is simple and describes the hysteretic characteristics, is chosen for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force.

  • PDF

에너지 소산능력에 기초한 철근콘크리트 부재의 이력모델 (Energy-Based Hysteretic Models for R/C Members)

  • 엄태성;박홍근
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.45-54
    • /
    • 2004
  • 기존의 철근콘크리트 부재의 이력모델은 실험에 기초한 경험식을 사용하여 주기거동시 나타나는 강성저하를 나타내는데 중점을 두므로, 에너지소산능력을 정확히 예측할 수 없다. 최근 다양한 설계변수의 영향을 고려하여 주기거동 동안 소산하는 에너지를 정확히 계산할 수 있는 설계식이 개발되었다. 본 연구에서는 이러한 설계식에 기초하여 휨지배 부재에 대한 에너지기초이력모델(Energy-Based Hysteretic Model)을 개발하였다. 제안된 모델은 완전한 주기거동을 할 경우 실제거동과 동일한 에너지를 소산하도록 고안된 선형모델로, 주곡선(Primary Curve)과 주기곡선(Cyclic Curve)을 근간으로 하고 다섯 가지 제하/재하 규칙을 적용하여 핀칭 및 강성저하를 수반하는 주기거동을 나타낸다. 본 연구에서는 다양한 실험과의 비교를 통하여 제안된 이력모델의 정확성과 유효성을 검증하였다. 제안된 이력모델은 간단하면서도 수치해석의 적용에 용이하므로, 정적 및 동적 비선형 해석/설계 프로그램의 개발에 사용할 수 있다.

역모델을 이용한 MR 댐퍼의 감쇠계수 제어 (Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

인공신경망을 이용한 이력모델에 관한 연구 (A Study on the Hysteretic Model using Artificial Neural Network)

  • 김호성;이승창;이학수;이원호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.387-394
    • /
    • 1999
  • Artificial Neural Network (ANN) is a computational model inspired by the structure and operations of the brain. It is massively parallel system consisting of a large number of highly interconnected and simple processing units. The purpose of this paper is to verify the applicability of ANN to predict experimental results through the use of measured experimental data. Although there have been accumulated data based on hysteretic characteristics of structural element with cyclic loading tests, it is difficult to directly apply them for the analysis of elastic and plastic response. Thus, simple models with mathematical formula such as Bi-Linear Model, Ramberg-Osgood Model, Degrading Tri Model, Takeda Model, Slip type Model, and etc, have been used. To verify the practicality and capability of this study, ANN is adapted to several models with mathematical formula using numerical data To show the efficiency of ANN in nonlinear analysis, it is important to determine the adequate input and output variables of hysteretic models and to minimize an error in ANN process. The application example is Beam-Column joint test using the ANN in modeling of the linear and nonlinear hysteretic behavior of structure.

  • PDF

Effect of stiffener arrangement on hysteretic behavior of link-to-column connections

  • Zarsav, Saman;Zahrai, Seyed Mehdi;Oskouei, Asghar Vatani
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.1051-1064
    • /
    • 2016
  • Link-to-column connections in Eccentrically Braced Frames (EBFs) have critical role in their safety and seismic performance. Accordingly, in this study, contribution of supplemental stiffeners on hysteretic behavior of the link-to-column connection is investigated. Considered stiffeners are placed on both sides and parallel to the link web between the column face and the first stiffener of the link. Hysteretic behaviors of the link beams with supplemental stiffeners are numerically investigated using a pre-validated numerical model in ANSYS. It turned out that supplemental stiffeners can change energy dissipation mechanism of intermediate links from shear-flexure to shear. Both rectangular and trapezoidal supplemental stiffeners are studied. Moreover, optimal placement of the supplemental stiffeners is also investigated. Obtained results indicate a discrepancy of less than 9% in maximum link shear of the numerical and experimental specimens. This indicates that the numerical results are in good agreement with those obtained from the test. Trapezoidal supplemental stiffeners improve rotational capacity of the link. Moreover, use of two supplemental stiffeners at both ends of the link can more effectively improve hysteretic behavior of intermediate links. Supplemental stiffeners would also alleviate the imposed demands on the connections. This latter feature is more pronounced in the case of two supplemental stiffeners at both ends of the link.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.