• 제목/요약/키워드: hysteresis friction

검색결과 75건 처리시간 0.02초

A new proposed Friction Multi-layered Elastomeric Seismic Isolator (FMESI)

  • Mirali-Katouli, Gholamali;Abdollahzadeh, Gholamreza
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.407-416
    • /
    • 2021
  • Seismic isolation is one of the best-advanced methods for controlling seismic vibrations in buildings, bridges and nuclear facilities. A new Friction Multi-Layer Elastomeric Seismic Isolator (FMESI) has been modeled, analyzed and investigated by ABAQUS finite element analysis software and then, compared to real models. A number of friction cores have been used instead of the lead core therefore, some of the previous isolator problems have been almost resolved. Moreover, Studies show that the proposed isolator provides suitable initial stiffness and acceptable hysteresis behavior under different vertical and horizontal loading conditions and also internal stresses in different layers are acceptable. Also, as a result, the initial stiffness and overall area of the curves increase, as friction coefficients of the cores increase, although the frictional coefficients must be within a certain range.

접촉각 측정과 AFM/LFM을 이용한 불화 유기박막의 특성 평가 (Characterization of Fluorocarbon Thin Films by Contact Angle Measurements and AFM/LFM)

  • 김준성;차남구;이강국;박진구;신형재
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.35-40
    • /
    • 2000
  • Teflon-like fluorocarbon thin film was deposited on various substrates by vapor deposition using PFDA (perfluorodecanoic acid). The fluorocarbon films were characterized by static/dynamic contact angle analysis, VASE (Variable-angle Spectroscopic Ellipsometry) and AFM/LFM (Atomic/Lateral Force Microscopy). Based on Lewis Acid/Base theory, the surface energy ($S_{E}$) of the films was calculated by the static contact angle measurement. The work of adhesion (WA) between de-ionized water and substrates was calculated by using the static contact data. The fluorocarbon films showed very similar values of the surface energy and work of adhesion to Teflon. All films showed larger hysteresis than that of Teflon. The roughness and relative friction force of films were measured by AFM and LFM. Even though the small reduction of surface roughness was found on film on $SiO_2$surface, the large reduction of relative friction farce was observed on all films. Especially the relative friction force on TEOS was decreased a quarter after film deposition. LFM images showed the formation of "strand-like"spheres on films that might be the reason far the large contact angle hysteresis.

  • PDF

멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구 (Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis)

  • 남승국;오염락;전성희
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

교량받침용 대형 Roller Shoe의 구름마찰특성에 관한 연구 (A Study on the Rolling Friction Characteristics of Large Scale Roller Shoe for Bridge Supporter)

  • 김영득;김재철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.660-663
    • /
    • 2001
  • There is a mechanical device between the superstructure and substructure of a bridge, which transmit vertical load of superstructure to the substructure and absorb horizontal displacement of super structure due to thermal, dynamic, load, etc. In order to meet two requirements at once, the structure of roller between plates is widely used, and this roller between plates is widely used, and this roller shoe system is known to have smaller horizontal movement resistance than any other type of bridge shoe. In this study, rolling friction resistance characteristics of roller-plate friction system is investigated according to roller dimension, vertical load, hardness and roughness of roller and plate. On the base of the results, the rolling friction resistance of large scale roller shoe is evaluated using model experiment.

  • PDF

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성 (The Characteristics of Friction and Wear for Automotive Leaf Spring Materials)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • 제19권6호
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

유한요소법을 이용한 Free-Friction Stroke 댐퍼의 동특성 해석 (A Study on the Dynamic Characteristics of Free-Friction Stroke Damper by Finite Element Method)

  • 구희춘;이재욱;유완석
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1417-1426
    • /
    • 2009
  • Various types of damper are usually applied to reduce noise and vibration for mechanical systems. Especially, for washing machines, the free-friction stroke damper is installed. The behavior of the free-friction stroke damper has nonlinear characteristics such as hysteresis and viscoelastic properties because of its foam material. First of all, the dynamic experiments were carried out by using a MTS machine to find characteristics of the free-friction stroke damper. And the simulation model of the free-friction stroke damper and characteristics of a foam material were evaluated by using optimization technique. To make a good simulation model which can show the dynamic characteristics, it is important to understand the working mechanism of the damper. The Finite Element Method (FEM) technique can help us instinctively understand the damping phenomenon under operating conditions, because we can observe the condition of damper at every step in the simulation by using it. Also, by changing factors, we can comprehend the variation of characteristics of damper. So, in this paper, a study on the dynamic characteristics of free-friction stroke damper by FEM is focused on. Finally, the possibility which physical experiments can be replaced into simulations is shown.

Analysis of dry friction hysteresis in a cable under uniform bending

  • Huang, Xiaolun;Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.63-80
    • /
    • 1994
  • A cable is considered as a system of helical wires and a core with distributed dry friction forces at their interfaces. Deformations of the cable subjected to a uniform bending are analyzed. It is shown that there is a critical bending curvature when a slip at the wire-core interface occurs. It originates at the neutral axis of the cross section of the cable and then spreads symmetrically over the cross section with the increase of bending. The effect of slippage on the cable stiffness is investigated. This model is also used to analyze a cable under the quasi-static cyclic bending. Explicit expression for the hysteretic losses per cycle of bending is derived. Numerical examples are given to show the influence of dry friction and helix angle on the bending stiffness and hysteretic losses in the cable.

Dry friction losses in axially loaded cables

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.330-344
    • /
    • 1996
  • A model of a cable comprising interacting wires with dry friction forces at the interfaces is subjected to a quasi-static cyclic loading. The first cycle of this process, comprising of axial loading, unloading and reloading is investigated analytically. Explicit load-elongation relationships are obtained for all of the above phases of the cycle. An expression for the hysteretic losses is also obtained in an explicit form. It is shown that losses are proportional to the third power of the amplitude of the oscillating axial force, and are in inverse proportion to the interwire friction forces. The results obtained are used to introduce a model of a cable as a solid rod with an equivalent stiffness and damping properties of the rod material. It is shown that the stiffness of the equivalent rod is weakly nonlinear, whereas the viscous damping coefficient is proportional to the amplitude of the oscillation. Some numerical results illustrating the effect of cable parameters on the losses are given.

Using friction dampers in retrofitting a steel structure with masonry infill panels

  • Zahrai, Seyed Mehdi;Moradi, Alireza;Moradi, Mohammadreza
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.309-325
    • /
    • 2015
  • A convenient procedure for seismic retrofit of existing buildings is to use passive control methods, like using friction dampers in steel frames with bracing systems. In this method, reduction of seismic demand and increase of ductility generally improve seismic performance of the structures. Some of its advantages are development of a stable rectangular hysteresis loop and independence on environmental conditions such as temperature and loading rate. In addition to friction dampers, masonry-infill panels improve the seismic resistance of steel structures by increasing lateral strength and stiffness and reducing story drifts. In this study, the effect of masonry-infill panels on seismic performance of a three-span four-story steel frame with Pall friction dampers is investigated. The results show that friction dampers in the steel frame increase the ductility and decrease the drift (to less than 1%). The infill panels fulfill their function during the imposed drift and increase structural strength. It can be concluded that infill panels together with friction dampers, reduced structural dynamic response. These infill panels dissipated input earthquake energy from 4% to 10%, depending on their thickness.