• Title/Summary/Keyword: hypothalamo-pituitary-gonadal axis

Search Result 4, Processing Time 0.019 seconds

Chronic kisspeptin delays puberty and reduces feed intake and body weight in female rats

  • Sathagopam, Sriravali;Ullewar, Meenal Prabhakar;Harne, Rakhi;Velmurugan, Sathya
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.25-34
    • /
    • 2021
  • Kisspeptin is a key player in the central control of reproductive axis. Central administration of kisspeptin has been shown to advance puberty in rats. Stimulation of hypothalamic GnRH pulse generating mechanism by kisspeptin has been proposed to be the mechanism behind the onset of puberty. We hypothesized that chronic high doses of kisspeptin administration suppresses the reproductive axis and hence delays the pubertal onset. Hence, we investigated the effect of peripheral administration of chronic high doses of kisspeptin on pubertal onset, feed intake and body weight in female rats. Rats were treated with saline or kisspeptin (100 nmoles per day; intraperitoneal) for 26 days (day 25 to day 50 postnatal) and the day of vaginal opening was marked as day of puberty. Kisspeptin treated rats had delayed pubertal onset and reduced feed intake and body weight. Gonadal GPR54 mRNA was reduced suggesting that chronic high doses of kisspeptin may suppress the reproductive functions possibly by downregulation of GPR54 receptor. However, delay in puberty due to reduction in feed intake and body weight could not be ruled out in this study. Further, our study emphasizes the importance of dosage and duration of kisspeptin administration in the manipulation of reproductive axis. Our study, for the first time, suggests that kisspeptin and its analogues, if proven beneficial, could be used to treat precocious puberty in children. It appears that, though a promising tool for enhancing fertility, kisspeptin acts as a double-edged sword and has to be cautiously used to manipulate reproduction.

KiSS-1 : A Novel Neuropeptide in Mammalian Reproductive System (KiSS-1 : 포유동물 생식계에서의 새로운 신경펩타이드)

  • Lee, Sung-Ho;Choe, Don-Chan
    • Development and Reproduction
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • The hypothalamo-pituitary-gonadal hormone axis is centrally controlled by a complex regulatory network of excitatory and inhibitory signals, that is dormant during infantile and juvenile periods and activated at puberty. The kisspeptins are the peptide products of the KiSS-1 gene and the endogenous agonists for the G protein-coupled receptor 54(GPR54). Although KiSS-1 was initially discovered as a metastasis suppressor gene, a recent evidence suggests the KiSS-1/GPR54 system is a key regulator of the reproductive system. Yet the actual role of the KiSS-1/GPR54 system in the neuroendocrine control of gonadotropin secretion remains largely unexplored, the system could be the first missing link in the reproductive hormonal axis. Central or peripheral administration of kisspeptin stimulates the hypothalamic-pituitary-gonadal axis, increasing circulating gonadotropin levels in rodents, sheep, monkey and human models. These effects appear likely to be mediated via the hypothalamic GnRH neuron system, although kisspeptins may have direct effects on the anterior pituitary gland. The loss of function mutations of the GPR54(GPR54-/-) have been associated with lack of puberty onset and idiopathic hypogonadotropic hypogonadism(IHH). So kisspeptin infusion may provide a novel mechanism for HPG axis manipulation in disorders of the reproductive system.

  • PDF

Comparative Effects on Secretion of LH, FSH, Prolactin, and Testosterone by Chronic and Direct Hypothalamic Administration of Nonylphenol to Adult Male Rats

  • Park, Kun-Suk;Jang, Won-Cheoul;Kim, Mee-Kyung;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.215-222
    • /
    • 1999
  • Nonylphenol (NP) is a widespread environmental pollutant that has been shown to exert both toxic and estrogenic effects on mammalian cells. As the effects of NP on the reproductive system of adult male vertebrates are virtually unknown, we investigated not only the changes of reproductive hormone secretion in serum after chronic exposure to NP but also, in order to identify the site of its action, the reproductive hormone secretion in serum 48 hours after microinfusion of NP within hypothalamic preoptic area (POA). In the chronic exposure, the luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone in serum were decreased but prolactin (PRL) concentrations were increased. The LH, FSH, and testosterone in serum were decreased through the direct infusion of NP into POA, while there was no difference in mean serum prolactin between NP and control groups. These observations suggest that NP as endocrine disruptor has modulatory effects on hypothalamo-pituitary-gonadal axis and that the site of action of NP could be hypothalamic POA.

  • PDF

Effects of Phthalate/Adipate Esters Exposure during Perinatal Period on Reproductive Function after Maturation in Rats (성숙한 랫트의 번식 기능에 있어 프탈레이트/아디페이트 에스테르의 주산기 노출의 영향)

  • ;;;;;;Yamanouchi, K.;Nishihara, M.
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.651-662
    • /
    • 2006
  • Phthalate esters that are used as plasticizers and also found at low levels in foods such as dairy products are often mentioned as suspected endocrine disrupters. The purpose of the present study is to elucidate whether perinatal exposure to di-n-butyl phthalate(DBP), diisononyl phthalate (DINP) and di-2-ethylhexyl adipate (DEHA) affects several aspects of reproductive function in rats especially sexual differentiation of the brain. To this end, the dams were provided with pulverized soy-free diet containing 20, 200, 2,000 and 10,000 ppm of DBP, 40, 400, 4,000 and 20,000 ppm of DINP, or 480, 2,400 and 12,000 ppm of DEHA from gestational day (GD) 15 to postnatal day (PDN) 21, the day of weaning, and serum sex steroid hormone, gonadotropin levels and sexual behaviors after maturation were assessed. At Postnatal week (PNW) 20-21, serum levels of sex steroids and gonadotropins in both male and female rats, as well as estrous cyclicity in females, were not changed by perinatal exposure to DBP, DINP and DEHA, indicating that these chemicals did not affect sexual differentiation of the brain controlling the endocrine system of hypothalamo-pituitary-gonadal (HPG) axis. On the other hand, inhibitory influences on sexual behaviors, especially on ejaculation in males and lordosis in females, were observed by perinatal exposure to these chemicals. These results suggest that these chemicals may act directly on discrete regions of the hypothalamus regulating sexual behaviors, but not regulating gonadotropin secretion, thereby affect sexual differentiation of the brain with a resultant decrease in sex-specific behaviors in adulthood.