• Title/Summary/Keyword: hyphal growth

Search Result 186, Processing Time 0.021 seconds

Ultrastructure of the Epiphytic Sooty Mold Capnodium on Walnut Leaves

  • Kim, Ki Woo
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.14-14
    • /
    • 2015
  • Cellular aspects of sooty mold on walnut leaves were investigated by using light and electron microscopy. A black coating developed on the adaxial leaf surface of a walnut tree. No infestations were found on the abaxial leaf surface with peltate glandular trichomes. Light microscopy showed that fungal complexes from the leaf surface were composed of brown conidia and hyphae. Conidia, with longitudinal and transverse septa, were variable in length ranging from 10 to $30{\mu}m$, and commonly found in clusters, forming microsclerotia. Neither epidermal penetration nor hyphal entrance to host tissues was observed. Based on their morphological characteristics, the fungal complexes were assumed to be Capnodium species. An electron-dense melanized layer was present on the cell wall of multi-celled conidia. Concentric bodies in the fungal cytoplasm had an electron-translucent core surrounded by an electron-dense margin with a fibrillar sheath. Chloroplasts without starch granules in the palisade mesophyll cells of sooty leaves had electron-dense stromata and swollen plastoglobuli. These results suggest that the epiphytic growth of fungal complexes can be attributed to the melanized layer and concentric bodies against a water-deficient environment on the leaf surface. Ultrastructural characteristics of the sooty leaves indicate typical features of dark-adapted and non-photosynthetic shade leaves.

  • PDF

Control Effect of Bacillus subtilis B-4228 on Root Rot of Panax ginseng (Bacillus subtilis B-4228의 인삼 근부병 억제효과)

  • Lee, Byung-Dae;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.67-70
    • /
    • 2004
  • Bacillus subtilis B-4228 selected from ginseng field soil for prevention of rusty root was tested for the control of ginseng root rot. In petri-plate dual culture, mycelial growth of Cylindrocarpon destructans was inhibited by B-4228 and hyphal swelling of C. destructans was occurred. In pot experiment with C. destructans-contaminated soil B-4228 dipping of ginseng seedling showed significant preventive effect of root rot (p=0.01), percent healthy root 82% and 20% for treatment and control, root rot rate 6% and 50.4%, respectively.

Occurrence of Stem Rot of Astragalus sinicus Caused by Sclerotium rolfsii in Korea (Sclerotium rolfsii에 의한 자운영 흰비단병의 발생)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Kim, Tae-Sung;Song, Won-Doo;Cho, Hyeoun-Suk
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.198-200
    • /
    • 2009
  • From 2008 to 2009, the stem rot of Astragalus sinicus L. caused by Sclerotium rolfsii occurred sporadically in Gyeongnam area, Korea. The typical symptom is water-soaking, rotting and wilting on the stem. The infected plants were eventually died. White mycelial mats were spread over lesions, and then sclerotia were formed on stems and near soil line. The sclerotia were globoid in shape, white to brown in color, 1-3 mm in size and the hyphal width was 3-9 μm. The optimum temperature for mycelial growth and sclerotial formation on PDA was 30oC. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. On the basis of mycological characteristics and pathogenicity to host plants, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report on the stem rot of A. sinicus caused by S. rolfsii in Korea.

Antifungical Activity of Autochthonous Bacillus subtilis Isolated from Prosopis juliflora against Phytopathogenic Fungi

  • Abdelmoteleb, Ali;Troncoso-Rojas, Rosalba;Gonzalez-Soto, Tania;Gonzalez-Mendoza, Daniel
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.385-391
    • /
    • 2017
  • The ability of Bacillus subtilis, strain ALICA to produce three mycolytic enzymes (chitinase, ${\beta}$-1,3-glucanase, and protease), was carried out by the chemical standard methods. Bacillus subtilis ALICA was screened based on their antifungal activity in dual plate assay and cell-free culture filtrate (25%) against five different phytopathogenic fungi Alternaria alternata, Macrophomina sp., Colletotrichum gloeosporioides, Botrytis cinerea, and Sclerotium rolfesii. The B. subtilis ALICA detected positive for chitinase, ${\beta}$-1,3-glucanase and protease enzymes. Fungal growth inhibition by both strain ALICA and its cell-free culture filtrate ranged from 51.36% to 86.3% and 38.43% to 68.6%, respectively. Moreover, hyphal morphological changes like damage, broken, swelling, distortions abnormal morphology were observed. Genes expression of protease, ${\beta}$-1,3-glucanase, and lipopeptides (subtilosin and subtilisin) were confirmed their presence in the supernatant of strain ALICA. Our findings indicated that strain ALICA provided a broad spectrum of antifungal activities against various phytopathogenic fungi and may be a potential effective alternative to chemical fungicides.

Suppression of Melanose Caused by Diaporthe citri on Citrus Leaves Pretreated with Bio-sulfur

  • Shin, Yong Ho;Ko, Eun Ju;Kim, Su Jeong;Hyun, He Nam;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.417-424
    • /
    • 2019
  • Melanose, caused by Diaporthe citri, is one of severe diseases in citrus, a major economic resource in Jeju island. To reduce the usage amount of organic synthetic fungicide, bio-sulfur was tested as an alternative chemical to control citrus melanose in the present study. Direct antifungal activity of bio-sulfur against D. citri was determined through in vitro experiment using artificial nutrient media. Disease severity of melanose on bio-sulfur pretreated citrus leaves was lower than that on untreated ones. To illustrate the mechanism of disease suppression by bio-sulfur, infection structures were observed with a fluorescent microscope and a scanning electron microscope. In fluorescent microscopic observation, most conidia rarely germinated. In addition, hyphal growth on leaves pretreated with bio-sulfur was inhibited compared to that on untreated ones. In scanning electron microscope images of bio-sulfur pretreated leaves, surfaces of most conidia were shrunk while hyphae were morphologically changed and frequently branched. Such microscopic observations were also found for leaves pretreated with a commercial fungicide Dithianon. These results suggest that bio-sulfur may be used to control citrus melanose as an environment friendly alternative to organic synthetic fungicides

Characterization of Chitinolytic and Antifungal Activities in Marine-Derived Trichoderma bissettii Strains

  • Dawoon Chung;Yong Min Kwon;Ji Yeon Lim;Seung Sub Bae;Grace Choi;Dae-Sung Lee
    • Mycobiology
    • /
    • v.50 no.4
    • /
    • pp.244-253
    • /
    • 2022
  • Trichoderma fungi have been intensively studied for mycoparasitism, and the latter is closely related to their cell-wall degrading enzymes including chitinase. Here, we studied marine-derived Trichoderma spp., isolated from distinct sources and locations, for chitinolytic and antifungal activity. Based on morphological and phylogenetic analyses, two strains designated GJ-Sp1 and TOP-Co8 (isolated from a marine sponge and a marine alga, respectively) were identified as Trichoderma bissettii. This species has recently been identified as a closely related species to Trichoderma longibrachiatum. The extracellular crude enzymes of GJ-Sp1 and TOP-Co8 showed activities of chitobiosidase and b-N-acetylglucosaminidase (exochitinase) and chitotriosidase (endochitinase). The optimum chitinolytic activity of the crude enzymes was observed at 50 ℃, pH 5.0, 0-0.5% NaCl concentrations, and the activities were stable at temperatures ranging from 10 to 40 ℃ for 2 h. Moreover, the crude enzymes showed inhibitory activity against hyphal growth of two filamentous fungi Aspergillus flavus and Aspergillus niger. To the best of our knowledge, this is the first report of the chitinolytic and antifungal activity of T. bissettii.

Ecology of Ginger Rhizome Rot Development Caused by Pythium myriotylum (Pythium myriotyrum에 의한 생강뿌리썩음병의 발생상태)

  • Kim, Choong-Hoe;Yang, Sung-Seok;Hahn, Ki-Don
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.184-190
    • /
    • 1997
  • Lesion enlargement of ginger rhizome rot was most rapid at 35~40 C, but delayed greatly as temperature decreased. Time needed for a killing a ginger plant, 22~25 cm long, was about 5 days at 35~40 C, but was 15 days at 15 C in a growth chamber test. Higher RH above 90%, higher soil moisture level above 80% of maximum soil moisture capacity, and deeper planting below 4cm enhanced the lesion development on ginger stems and rhizomes. Pythium myriotylum existed in field soil as forms of hyphal portion, hyphal swelling body, or oospore- or zoospore-like bodies, and served as the origin of its colonization. Inocula of P. myriotylum was randomly distributed in soil surface around ginger plants, but its density was decreased as increasing soil depth with the highest density at 0~10 cm soil depth. Population density of P. myriotylum did not vary significantly between the rhizoplane and the rhizosphere soil of a ginger plant, but differed greatly between the disessed and healthy plants with several to several hundreds times higher population in the diseased plants. A positive curvilinear relationship was found between P. myriotylum density and ginger rhizome rot severity.

  • PDF

Stem Rot on Ligularia fischeri Caused by Sclerotium rolfsii in Korea (Sclerotium rolfsii에 의한 곰취 흰비단병)

  • Moon, Youn-Gi;Kim, Se-Won;Choi, Jun-Keun;Kwon, Soon-Bae;Shim, Hong-Sik;Ju, Ho-Jong;Choi, In-Young
    • Research in Plant Disease
    • /
    • v.21 no.1
    • /
    • pp.36-39
    • /
    • 2015
  • In June 2012 and 2013, a destructive stem rot symptoms of Ligularia fischeri occurred sporadically in Hoengseong-gun and Pyeongchang-gun Gangwon-do, Korea. The typical symptom included water-soaking on the main stem, rotting, wilting and blighting, which eventually leads to death of the plant. White mycelial mats were spread over lesions and brown sclerotia were formed on stems and near soil surface. The sclerotia were white to brown, spherical or irregular, 1-3 mm in size on potato dextrose agar (PDA), The optimum temperature range of hyphal growth was $25-30^{\circ}C$ and the hyphal diameter was $4-10{\mu}m$. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. The resulting sequence of 695 bp was deposited in GenBank. A BLAST search revealed that sequences of the this isolates showed >99% identity with those of Sclerotium rolfsii. On the basis of the morphological characteristics and phylogenetic analyses of molecular markers ITS rDNA, the fungi were identified as S. rolfsii. A pathogenicity test was carried out to fulfill Koch's postulates. To our knowledge, this is the first report of S. rolfsii on Ligularia fischeri in Korea.

Ultrastructure of Cell Wall in the Suppressor Mutant of Null Pigmentation (SU-NPG) of Aspergillus nidulans (Aspergillus nidulans 색소결핍 억제돌연변이주의 세포벽 미세구조)

  • 정윤신
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2004
  • To investigate the effect of the cell wall on the pigmentation and branching in Aspergillus nidulans, ultrastructure of cell wall in suppressor mutant of the null pigmentation (SU-NPG, SU602) has been examined. Scanning electron microgrphs (SEM) revealed that the most outer layer of conidia wall peeled off in SU-NPG on day 6 from the complete conidiation. They also showed that hyphal growth and branching were not well developed in SU-NPG. Transmission electron micrographs (TEM) showed that the plasma membrane was not crenulated and the hyphal wall was thick in SU-NPG. These results indicated that the ultrastructure of cell wall in SU-NPC might be modified. Cytochemical analysis showed that the cell wall in SU-NPG was differentiated into Cl, C3, C2 and C4 layer in conidia and H1, H3, H2 and H4 layer in hyphae. C3 layer and H3 layer existed in SU-NPG. The increment of the diameter in SU-NPG hyphae might be caused by the thickness of H3 layer. These results suggest that SU-NPG may have an immature but the differentiated structure for the pigmentation in cell wall.

The Isolation and Characterization of the Antagonistic Microorganisms, Serratia marcescens-YJK1, for Major Pathogens on Paprika (파프리카에 발생하는 주요 병원균에 대한 길항미생물, Serratia marcescens-YJK1, 분리와 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.855-868
    • /
    • 2014
  • Synthetic agro-chemicals have been widely used to control diseases on paprika but these days negative attention has been increasing to use of them because of several adverse effects. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ1 isolated in this research belongs to a group of Serratia marcescens. Specially, 16S rDNA gene sequence of YKJ1 showed 99% of sequence similarity with S. marcescens. Observation through the optical microscope revealed that YKJ1 suppressed the spore germination and the hyphal growth of pathogens. YKJ1 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. S. marcescens found in this study call as S. marcescens-YKJ1 and it may be valuable as one of biological control agents against major diseases of paprika in the future even though it is require to be tested with more study on field test.