본 연구에서는 초분광영상을 이용한 표적탐지에 있어 배경 신호 특징에 포함되는 표적 신호가 탐지성능에 미치는 영향을 살펴보고, 분광각을 기준으로 표적과 유사한 분광반사 특성을 가지는 화소들을 배경 특징화 과정에서 제외함으로써 표적탐지 성능을 향상시킬 수 있는 방법을 제안하였다. 초분광 표적탐지를 위해 가장 흔히 이용되는 matched Filter와 adaptive cosine estimator 기법에 대해 실제 항공 초분광영상 자료와 여기에 인공표적을 삽입하여 생성한 모의 자료를 이용한 실험 결과, 배경 특징화를 위한 공분산행렬 계산 시 표적 스펙트럼과 유사도가 높은 표적 유사화소들을 제외함으로써 탐지 성능이 크게 향상될 수 있음이 확인되었다. 분광각외에 다양한 유사도 판정 기준들에 대한 적용성 연구와 함께, 제외되는 표적 유사화소들의 양이 최적으로 결정될 수 있는 방법에 대한 추가 연구가 이루어진다면 사용이 간편하고 성능이 우수한 초분광 표적탐지 기법으로 활용될 수 있을 것으로 기대된다.
In this study, a target detection algorithm was proposed for using hyperspectral imagery. The proposed algorithm is designed to have minimal processing time, low false alarm rate, and flexible threshold selection. The target detection procedure can be divided into two steps. Initially, candidates of target pixel are extracted using matching ratio of spectral pattern that can be calculated by spectral derivation. Secondly, spectral distance is computed only for those candidates using Euclidean distance. The proposed two-step method showed lower false alarm rate than the Euclidean distance detector applied over the whole image. It also showed much lower processing time as compared to the Mahalanobis distance detector.
Qianghui Wang;Bing Zhou;Wenshen Hua;Jiaju Ying;Xun Liu;Lei Deng
Current Optics and Photonics
/
제8권3호
/
pp.282-299
/
2024
Target detection (TD) is a research hotspot in the field of hyperspectral imaging (HSI). Traditional TD methods often mine targets from HSIs under a single imaging condition, without considering the influence of imaging conditions. In fact, the spectra of ground objects in HSIs are uncertain and affected by the imaging conditions (weather, atmospheric, light, time, and other angle conditions including zenith angle). Hyperspectral data changes under different imaging conditions. Therefore, the detection result for a single imaging condition cannot accurately reflect the effectiveness of the detection method used. It is necessary to analyze the performance of various detection methods under different imaging conditions, to find a more applicable detection method. In this paper, we study the performance of TD methods under various land-based imaging conditions. We first summarize classical TD methods and evaluation methods. Then, the detection effects under various imaging conditions are analyzed. Finally, the concepts of the stability coefficient (SC) and effective area under the curve (EAUC) are proposed to comprehensively evaluate the applicability of detection methods under land-based imaging conditions, in terms of both detection accuracy and stability. This is conducive to our selection of detection methods with better applicability in land-based contexts, to improve detection accuracy and stability.
Hyperspectral cameras acquire reflectance values at many different wavelength bands. Dimensions tend to increase because spectral information is stored in each pixel. Several attempts have been made to reduce dimensional problems such as the feature selection using Adaboost and dimension reduction using the Simulated Annealing technique. We propose a novel material detection method that consists of four steps: feature band selection, feature extraction, SVM (Support Vector Machine) learning, and target and specific region detection. It is a combination of the band ratio method and Simulated Annealing algorithm based on detection rate. The experimental results validate the effectiveness of the proposed feature selection and band ratio method.
현재까지 초분광영상을 위한 다양한 표적탐지 알고리즘이 개발 및 사용되고 있다. 그러나 표적탐지 알고리즘의 비교 및 검증 기준으로 1~2가지 영상에 적용한 탐지정확도 만을 사용하고 있어, 사용자 입장에서 그 적용성을 평가하는 데에는 한계가 있다. 본 연구의 목적은 초분광영상에 대한 표적탐지 알고리즘의 적용성을 체계적으로 분석하는 것이다. 이를 위하여 표적, 배경, 영상의 분광적 또는 복사적 특성에 관련된 5가지 기준 인자들을 정의하였고, 각 인자의 변이에 따른 6가지 기존 표적탐지 알고리즘의 탐지정확도 변화를 비교하였다. 이와 더불어 영상 크기에 따른 각 알고리즘의 처리시간을 비교하였다. 그 결과 탐지정확도 측면에서는 기준인자에 따라 적용성이 높은 알고리즘의 종류가 다르게 나타났다. 처리시간은 2차 통계값 기반 알고리즘이 다른 알고리즘에 비해 매우 크게 나타났다. 탐지정확도와 처리시간을 종합적으로 고려한 결과 사용하는 영상과 표적 그리고 배경의 특성에 따라 적용성이 높은 알고리즘의 종류가 다른 것으로 나타났다. 따라서 초분광영상에 대한 기존 표적탐지 알고리즘의 적용성은 자료의 특성 및 배경과 표적의 공간적 분광적 관계에 따라 다르게 나타나므로, 사용하는 자료의 특성과 목적에 따라 적용하는 표적탐지 알고리즘의 종류가 달라질 필요가 있다.
Compact Reconnaissance Imaging Spectrometer for Mars(CRISM)은 489개의 밴드를 가지는 화성정찰궤도선의 초분광 카메라로써 이를 이용한 화성 지표의 광물 분포에 대한 많은 연구가 진행되어 왔다. 본 연구에서는 USGS의 스펙트럼 라이브러리를 기반으로 화성 Gusev Crater의 Spirit(Mars Exploration Rover A) 로버 착륙지에 대한 CRISM 영상에 Matched Filter와 Adaptive Cosine Estimator(ACE) 표적 탐지 알고리즘을 적용하여 광물 분포를 확인하고자 하였다. 연구 결과 감람석, 휘석, 자철석 등의 광물들이 Gusev 크레이터의 Columbia Hills에서 탐지되어 Spirit 로버의 지상 탐사 결과와 일치하고 있음을 확인하였다. 본 연구는 그간 CRISM의 광물 분포 연구가 일부 몇 개 밴드의 반사도만을 통해 계산된 광물 지수에 의존하던 것에서 관측 파장 대역 전체를 활용하는 초분광 표적 탐지 알고리즘을 이용한 새로운 적용방법을 제시한 것에 의의가 있다고 할 수 있다.
초분광 영상을 이용한 표적 탐지를 수행할 때에는 인접한 분광 밴드의 중복성의 문제 및 고차원 데이터로 인해 발생하는 방대한 계산량의 문제점을 해결하기 위한 특징 추출 과정이 필수적이다. 본 연구는 기계 학습 분야의 특징 선택 기법을 초분광 밴드 선택에 적용하기 위해 $L_{2,1}$-norm regression 모델을 이용한 새로운 밴드 선택 기법을 제안하였으며, 제안한 밴드 선택 기법의 성능 분석을 위해 표적이 존재하는 초분광영상을 직접 촬영하고 이를 바탕으로 표적 탐지를 수행한 결과를 분석하였다. 350 nm~2500 nm 파장 대역에서 밴드 수를 164개에서 약 30~40개로 감소시켰을 때 Adaptive Cosine Estimator(ACE) 탐지 성능이 유지되거나 향상되는 결과를 보였다. 실험 결과를 통해 제안한 밴드 선택 기법이 초분광 영상에서 탐지에 효율적인 밴드를 추출해 내며, 이를 통해 성능의 감소 없이 데이터의 차원 감소를 수행할 수 있어 향후 실시간 표적 탐지 시스템의 처리 속도 향상에 도움을 줄 수 있을 것으로 보인다.
본 연구에서는 탐지하고자 하는 표적신호를 초기 엔드멤버로 하여 Iterative Error Analysis를 통해 배경물질들의 반사 스펙트럼을 순차적으로 엔드멤버로 추출하고, 추출된 엔드멤버들을 이용하여 분광 혼합분석함으로써 표적물질의 분포를 탐지하는 새로운 초분광 표적탐지 기법을 제안한다. 제안된 기법에서는 표적물질에 대한 점유율의 변화가 주어진 문턱값보다 작아질 때 엔드멤버 추출을 위한 반복을 멈추게 된다. 이 기법은 Orthogonal Subspace Projection과 같은 모델 기반 표적 탐지기법들과 달리 사전에 엔드멤버들을 확보해야 할 필요가 없으며, Matched Filter와 같은 확률론적 표적 탐지 기법들과 달리 배경 전체를 하나의 신호로 특징화하지 않기 때문에 표적의 희소성 여부에 의한 영향을 받지 않는다는 장점을 가지고 있다. 실제 항공 초분광 영상자료 및 다양한 인공 표적물질들이 삽입된 모의 초분광 영상자료를 이용한 실험 결과, 제안된 방법이 희소 및 비 희소 표적의 탐지에 매우 효과적임이 확인되었다. 제안된 방법은 표적 물체 탐지뿐만 아니라 광물, 오염물질 등 자원 및 환경 분야에서 다양한 피복 물질을 탐지하는데 효과적으로 사용될 수 있을 것으로 기대된다.
Wang, Qianghui;Hua, Wenshen;Huang, Fuyu;Zhang, Yan;Yan, Yang
Current Optics and Photonics
/
제4권3호
/
pp.210-220
/
2020
Aiming at the problem that the Local Sparse Difference Index algorithm has low accuracy and low efficiency when detecting target anomalies in a hyperspectral image, this paper proposes a Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection algorithm, to improve detection accuracy for a hyperspectral image. First, the band subspace is divided according to the band correlation coefficient, which avoids the situation in which there are multiple solutions of the sparse coefficient vector caused by too many bands. Then, the appropriate double-window model is selected, and the background dictionary constructed and weighted according to Euclidean distance, which reduces the influence of mixing anomalous components of the background on the solution of the sparse coefficient vector. Finally, the sparse coefficient vector is solved by the collaborative representation method, and the sparse difference index is calculated to complete the anomaly detection. To prove the effectiveness, the proposed algorithm is compared with the RX, LRX, and LSD algorithms in simulating and analyzing two AVIRIS hyperspectral images. The results show that the proposed algorithm has higher accuracy and a lower false-alarm rate, and yields better results.
In this paper, we analyzed the effect of wavelet decomposition levels in feature extraction for anomaly detection from hyperspectral imagery. After wavelet analysis, anomaly detection was experimentally performed using the RX detector algorithm to analyze the detecting capabilities. From the experiment for anomaly detection using CASI imagery, the characteristics of extracted features and the changes of their patterns showed that radiance curves were simplified as wavelet transform progresses and H bands did not show significant differences between target anomaly and background in the previous levels. The results of anomaly detection and their ROC curves showed the best performance when using the appropriate sub-band decided from the visual interpretation of wavelet analysis which was L band at the decomposition level where the overall shape of profile was preserved. The results of this study would be used as fundamental information or guidelines when applying wavelet transform to feature extraction and selection from hyperspectral imagery. However, further researches for various anomaly targets and the quantitative selection of optimal decomposition levels are needed for generalization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.