• Title/Summary/Keyword: hyperspectral satellite imagery

Search Result 16, Processing Time 0.019 seconds

Photochemical Reflectance Index (PRI) Mapping using Drone-based Hyperspectral Image for Evaluation of Crop Stress and its Application to Multispectral Imagery (작물 스트레스 평가를 위한 드론 초분광 영상 기반 광화학반사지수 산출 및 다중분광 영상에의 적용)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.637-647
    • /
    • 2019
  • The detection of crop stress is an important issue for the accurate assessment of yield decline. The photochemical reflectance index (PRI) was developed as a remotely sensed indicator of light use efficiency (LUE). The PRI has been tested in crop stress detection and a number of studies demonstrated the feasibility of using it. However, only few studies have focused on the use of PRI from remote sensing imagery. The monitoring of PRI using drone and satellite is made difficult by the low spectral resolution image captures. In order to estimate PRI from multispectral sensor, we propose a band fusion method using adjacent bands. The method is applied to the drone-based hyperspectral and multispectral imagery and estimated PRI explain 79% of the original PRI. And time series analyses showed that two PRI data (drone-based and SRS sensor) had very similar temporal variations. From these results, PRI from multispectral imagery using band fusion can be used as a new method for evaluation of crop stress.

Water Column Correction of Airborne Hyperspectral Image for Benthic Cover Type Classification of Coastal Area (연안 해저 피복 분류를 위한 항공 초분광영상의 수심보정)

  • Shin, Jung Il;Cho, Hyung Gab;Kim, Sung Hak;Choi, Im Ho;Jung, Kyu Kui
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.31-38
    • /
    • 2015
  • Remote sensing data is used to increasing efficiency on benthic cover type survey. Satellite and aerial imagery has variance of reflectance by water column effect even if bottom is consisted with same cover type and condition. This study tried to analyze advances of surveying extent and accuracy through water column correction of CASI-1500 hyperspectral image. Study area is coast of Gangneung city, South Korea where benthic environment is rapidly changing with bleaching of coral reef. Water column correction coefficient was estimated using regression models between water reflectance ($R_W$) and depth for sand bottom then the coefficients were applied to whole image. The results shows that expanded interpretable depth from 6-7m to 15m and decreased variation of reflectance by depth. Additionally, water column corrected reflectance image shows 13%p increased accuracy on benthic cover type classification.

Bio-Optical Modeling of Laguna de Bay Waters and Applications to Lake Monitoring Using ASTER Data

  • Paringit, EC.;Nadaoka, K.;Rubio, MCD;Tamura, H.;Blanco, Ariel C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.667-669
    • /
    • 2003
  • A bio-optical model was developed specific for turbid and shallow waters. Special studies were carried out to estimate absorption and scattering properties as well as backscattering probability of suspended matter. The inversion of bio-optical model allows for direct retrieval of turbidity and chlorophyll- a from the visible-near infrared (VNIR) range sensor. Time-series satellite imagery from ASTER AM-1 sensor, were used to monitor the Laguna de Bay water quality condition. Spatial distribution of temperature for the lake was extracted from the thermal infrared (TIR) sensor. Corresponding field surveys were conducted to parameterize the bio -optical model. In-situ measurements include suspended particle and chlorophyll-a concentrations profiles from nephelometric devices and processing of water samples. Hyperspectral measurements were used to validate results of the bio -optical model and satellite- based estimation. This study provides a theoretical basis and a practical illustration of applying space- based measurements on an operational basis.

  • PDF

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;N.K. Libeesh;K.V. Arun Kumar;K.ChV. Naga Kumar;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3268-3276
    • /
    • 2023
  • The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Extraction of Water Depth in Coastal Area Using EO-1 Hyperion Imagery (EO-1 Hyperion 영상을 이용한 연안해역의 수심 추출)

  • Seo, Dong-Ju;Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.716-723
    • /
    • 2008
  • With rapid development of science and technology and recent widening of mankind's range of activities, development of coastal waters and the environment have emerged as global issues. In relation to this, to allow more extensive analyses, the use of satellite images has been on the increase. This study aims at utilizing hyperspectral satellite images in determining the depth of coastal waters more efficiently. For this purpose, a partial image of the research subject was first extracted from an EO-1 Hyperion satellite image, and atmospheric and geometric corrections were made. Minimum noise fraction (MNF) transformation was then performed to compress the bands, and the band most suitable for analyzing the characteristics of the water body was selected. Within the chosen band, the diffuse attenuation coefficient Kd was determined. By deciding the end-member of pixels with pure spectral properties and conducting mapping based on the linear spectral unmixing method, the depth of water at the coastal area in question was ultimately determined. The research findings showed the calculated depth of water differed by an average of 1.2 m from that given on the digital sea map; the errors grew larger when the water to be measured was deeper. If accuracy in atmospheric correction, end-member determination, and Kd calculation is enhanced in the future, it will likely be possible to determine water depths more economically and efficiently.