• Title/Summary/Keyword: hyperspectral satellite imagery

Search Result 16, Processing Time 0.023 seconds

A Study on Estimation of Water Depth Using Hyperspectral Satellite Imagery (초분광 위성영상을 이용한 수심산정에 관한 연구)

  • Yu, Yeong-Hwa;Kim, Youn-Soo;Lee, Sun-Gu
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.216-222
    • /
    • 2008
  • Purpose of this research is estimation of water depth by hyperspectral remote sensing in area that access of ship is difficult. This research used EO-l Hyperion satellite imagery. Atmospheric and geometric correction is executed. Compress of band used MNF transforms. Diffuse Attenuation Coefficient of target area is decided in imagery for water depth estimation. Determination of Emdmember in pixel is using Linear Spectral Unmixing techniques. Water depth estimated using this result.

  • PDF

Comparative Study on Hyperspectral and Satellite Image for the Estimation of Chlorophyll a Concentration on Coastal Areas (연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구)

  • Shin, Jisun;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.309-323
    • /
    • 2020
  • Estimation of chlorophyll a concentration (CHL) on coastal areas using remote sensing has been mostly performed through multi-spectral satellite image analysis. Recently, various studies using hyperspectral imagery have been attempted. In particular, airborne hyperspectral imagery is composed of hundreds of bands with a narrow band width and high spatial resolution, and thus may be more effective in coastal areas than estimation of CHL through conventional satellite image. In this study, comparative analysis of hyperspectral and satellite-based CHL images was performed to estimate CHL in coastal areas. As a result of analyzing CHL and seawater spectrum data obtained by field survey conducted on the south coast of Korea, the seawater spectrum with high CHL peaked near the wavelength bands of 570 and 680 nm. Using this spectral feature, a new band ratio of 570 / 490 nm for estimating CHL was proposed. Through regression analysis between band ratio and the measured CHL were generated new CHL empirical formula. Validation of new empirical formula using the measured CHL showed valid results, with R2 of 0.70, RMSE of 2.43 mg m-3, and mean bias of 3.46 mg m-3. As a result of applying the new empirical formula to hyperspectral and satellite images, the average RMSE between hyperspectral imagery and the measured CHL was 0.12 mg m-3, making it possible to estimate CHL with higher accuracy than multi-spectral satellite images. Through these results, it is expected that it is possible to provide more accurate and precise spatial distribution information of CHL in coastal areas by utilizing hyperspectral imagery.

Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery (Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가)

  • Kim, Yeji;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • An Image fusion, or Pansharpening is a methodology of increasing the spatial resolution of image with low-spatial resolution using high-spatial resolution images. In this paper, we have performed an image fusion of hyperspectral imagery by using panchromatic image with high-spatial resolution, multispectral and hyperspectral images with low-spatial resolution, which had been acquired by ALI and Hyperion of EO-1 satellite sensors. The study has been mainly focused on evaluating performance of fusion process following to the image fusion methodology of the block association, which had applied to ALI and Hyperion dataset by considering spectral characteristics between multispectral and hyperspectral images. The results from experiments have been identified that the proposed algorithm efficiently improved the spatial resolution and minimized spectral distortion comparing with results from a fusion of the only panchromatic and hyperspectral images and the existing block-based fusion method. Through the study in a proposed algorithm, we could concluded in that those applications of airborne hyperspectral sensors and various hyperspectral satellite sensors will be launched at future by enlarge its usages.

Estimation of Water Depth in Coastal Area Using Hyperspectral Satellite Imagery (하이퍼스펙트럴 위성영상을 이8한 연안지역의 수심산정)

  • Lee Jong-Chool;Kim Dae-Hyun;Lee Young-Do;Yu Young-Hwa
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.165-169
    • /
    • 2006
  • Purpose of this research is estimation of water depth by hyperspectral remote sensing in area that access of ship is difficult This research used EO-1 Hyperion satellite imagery. Atmospheric and geometric correction is executed. Compress of band used MNF transforms. Diffuse Attenuation Coefficient of target area is decided in imagery for water depth estimation. Determination of Emdmember in pixel is using Linear Spectral Unmixing techniques. Water depth estimated using this result.

  • PDF

Comparison of Hyperspectral and Multispectral Sensor Data for Land Use Classification

  • Kim, Dae-Sung;Han, Dong-Yeob;Yun, Ki;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.388-393
    • /
    • 2002
  • Remote sensing data is collected and analyzed to enhance understanding of the terrestrial surface. Since Landsat satellite was launched in 1972, many researches using multispectral data has been achieved. Recently, with the availability of airborne and satellite hyperspectral data, the study on hyperspectral data are being increased. It is known that as the number of spectral bands of high-spectral resolution data increases, the ability to detect more detailed cases should also increase, and the classification accuracy should increase as well. In this paper, we classified the hyperspectral and multispectral data and tested the classification accuracy. The MASTER(MODIS/ASTER Airborne Simulator, 50channels, 0.4~13$\mu$m) and Landsat TM(7channels) imagery including Yeong-Gwang area were used and we adjusted the classification items in several cases and tested their classification accuracy through statistical comparison. As a result of this study, it is shown that hyperspectral data offer more information than multispectral data.

  • PDF

Applicability of Hyperspectral Imaging Technology for the Check of Cadastre's Land Category (지목조사를 위한 초분광영상의 활용성 검토 연구)

  • Lee, InSu;Hyun, Chang-Uk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.spc4_2
    • /
    • pp.421-430
    • /
    • 2014
  • Aerial imagery, Satellite imaging and Hyperspectral imaging(HSI) are widely using at mapping those of agriculture, woodland, waters shoreline, and land cover, but are rarely applied at the Cadastre. There are many study cases on the overlay of aerial imagery and satellite imaging with Cadastral Map and the upgrade and registration of Cadastre' Land Category, however, reported as successful. Therefore, this study has been aimed to show the use of the Hyperspectral Imaging technology for Cadastre, especially for the land category. Also, the HSI sensor could function as a geospatial acquisition tool for error checks of the existed land categories, and as a helpful tool for acquiring the attributes and spatial data, such as the agriculture, soil, and vegetation, etc. This result indicates that HSI sensor can implement the Multipurpse Cadastre(MPC) by fusing with the cadastral information.

Development of crane-mounted hyperspectral imagery system for stable analysis of paddy field

  • Minekawa Yohei;Uto Kuniaki;Kosugi Yukio;Oda Kunio
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.570-573
    • /
    • 2004
  • We proposed a new system to collect hyperspectral data using a general cargo crane. The system has advantageous characteristics for precise data collection and analysis. In order to evaluate the validity, we performed the system on actual rice paddy field and analyzed the observed data. On the process, we could successfully extract the pure vegetation spectrum with high stability. The data taken by the system are useful for detail analysis among fields. In future development, it can be used for obtaining the grand truth for calibrating satellite or aerial hyperspectral images.

  • PDF

Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery (EO-1 Hyperion 초분광 영상의 밴드 접합 기법을 이용한 Landsat 8 (LDCM) OLI 센서의 방사 특성 검증)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • The quality of satellite imagery should be improved and stabilized to satisfy numerous users. The radiometric characteristics of an optical sensor can be a measure of data quality. In this study, a band aggregation technique and spectral response function of hyperspectral images are used to simulate multispectral images. EO-1 Hyperion and Landsat-8 OLI images acquired with about 30 minutes difference in overpass time were exploited to evaluate radiometric coefficients of OLI. Radiance values of the OLI and the simulated OLI were compared over three subsets covered by different land types. As a result, the index of agreement shows over 0.99 for all VNIR bands although there are errors caused by space/time and sensors.

Dimensionality Reduction Methods Analysis of Hyperspectral Imagery for Unsupervised Change Detection of Multi-sensor Images (이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석)

  • PARK, Hong-Lyun;PARK, Wan-Yong;PARK, Hyun-Chun;CHOI, Seok-Keun;CHOI, Jae-Wan;IM, Hon-Ryang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2019
  • With the development of remote sensing sensor technology, it has become possible to acquire satellite images with various spectral information. In particular, since the hyperspectral image is composed of continuous and narrow spectral wavelength, it can be effectively used in various fields such as land cover classification, target detection, and environment monitoring. Change detection techniques using remote sensing data are generally performed through differences of data with same dimensions. Therefore, it has a disadvantage that it is difficult to apply to heterogeneous sensors having different dimensions. In this study, we have developed a change detection method applicable to hyperspectral image and high spat ial resolution satellite image with different dimensions, and confirmed the applicability of the change detection method between heterogeneous images. For the application of the change detection method, the dimension of hyperspectral image was reduced by using correlation analysis and principal component analysis, and the change detection algorithm used CVA. The ROC curve and the AUC were calculated using the reference data for the evaluation of change detection performance. Experimental results show that the change detection performance is higher when using the image generated by adequate dimensionality reduction than the case using the original hyperspectral image.

Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters (연안해역 모니터링을 위한 초분광영상 처리기법 현황)

  • Kim, Sun-Hwa;Yang, Chan-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.48-63
    • /
    • 2015
  • In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.