• Title/Summary/Keyword: hyperspectral reflectance

Search Result 97, Processing Time 0.026 seconds

Nondestructive Classification of Viable and Non-viable Radish (Raphanus sativus L) Seeds using Hyperspectral Reflectance Imaging (초분광 반사광 영상을 이용한 무(Raphanus sativus L) 종자의 발아와 불발아 비파괴 판별)

  • Ahn, Chi Kook;Mo, Chang Yeun;Kang, Jum-Soon;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.411-419
    • /
    • 2012
  • Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.

Mapping Within-field Variability Using Airborne Imaging Systems: A Case Study from Missouri Precision Agriculture

  • Hong, S.Y.;Sudduth, K.A.;Kitchen, N.R.;Palm, H.L.;Wiebold, W.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1049-1051
    • /
    • 2003
  • This study investigated the use of airborne image data to provide estimates of within -field variability in soil properties and crop growth as an alternative to extensive field data collection. Hyperspectral and multispectral images were acquired in 2000, 2001, and 2002 for central Missouri experimental fields. Data were converted to reflectance using chemically-treated reference tarps with known reflectance levels. Geometric distortion of the hyperspectral pushbroom sensor images was corrected with a rubber sheeting transformation. Statistical analyses were used to relate image data to field-measured soil properties and crop characteristics. Results showed that this approach has potential; however, it is important to address a number of implementation issues to insure quality data and accurate interpretations.

  • PDF

A Study on the Spectral Information and Reflectance Characteristic of Levee Crack (제방 균열의 분광정보 및 반사율 특성에 관한 연구)

  • Kim, Jong-Tae;Lee, Chang-Hun;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.17-24
    • /
    • 2020
  • This study examined the spectral information and reflectance of cracks of an embankment with drone-based hyperspectral imagery for crack detection. A Nano-Hyperspec mounted on a drone was used as a sensor, and hyperspectral videos of different intensities of illumination of the cracks on the embankment located in the downstream of Andong-Dam were obtained. An analysis of the data value of the illumination and peak data-value, the coefficients of determination were calculated to be 0.9864 of the uncracked areas and 0.9851 of the cracked area. The reflectance of each area showed a similar value and pattern, regardless of the intensity of illumination. This result may have occurred because the reference values of the white reference as the calculation criteria of reflectance varied according to the intensity of illumination. The reflectance at the cracked area was 5.65% lower in visible light and 4.58% lower in near-infrared light than that at the uncracked area. The detection of cracks may offer more precise results in further studies when the gimbal direction and camera angles of the drone are calibrated. Because hyperspectral imagery enables the detection of crack depths and types of clay minerals, which are difficult to identify in general RGB imagery, it can serve as a preemptive measure for evaluating the embankment stability.

SPECTRAL ANALYSIS OF WATER-STRESSED FOREST CANOPY USING EO-l HYPERION DATA

  • Kook Min-Jung;Shin Jung-Il;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.7-10
    • /
    • 2005
  • Plant water deficiency during drought season causes physiological stress and can be a critical indicator of forest fire vulnerability. In this study, we attempt to analyze the spectral characteristics of water stressed vegetation by using the laboratory measurement on leaf samples and the canopy reflectance spectra extracted from satellite hyperspectral image data. Leaf-level reflectance spectra were measured by varying moisture content using a portable spectro-radiometer. Canopy reflectance spectra of sample forest stands of two primary species (pine and oak) located in central part of the Korean peninsula were extracted from EO-l Hyperion imaging spectrometer data obtained during the drought season in 2001 and the normal precipitation year in 2002. The preliminary analysis on the reflectance spectra shows that the spectral characteristics of leaf samples are not compatible with the ones obtained from canopy level. Although moisture content of vegetation can be influential to the radiant flux reflected from leaf-level, it may not be very straightforward to obtain the spectral characteristics that are directly related to the level of canopy moisture content. Canopy spectra form forest stands can be varied by structural variables (such as LAt, percent coverage, and biomass) other than canopy moisture content.

  • PDF

The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image (하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용)

  • Kim, Yong-Hyun;Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF

Hyperspectral Image Fusion for Tumor Detection (초분광 영상 융합을 이용한 종양인식)

  • Xu Cheng-Zhe;Kim In-Taek
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.11-20
    • /
    • 2006
  • This paper presents a method for detecting tumors on chicken carcasses by fusion of hyperspectral fluorescence and reflectance images. Classification of normal skin and tumor is performed by the image obtain 어 from optimal band ratio which minimizes the overlapping area of PDFs for normal skin and tumor. This method yields four feature images, each of them represents the ratio of two intensity values from a pixel. Classification is achieved by applying ISODATA to each pixel from the feature images. For the analysis of reflectance image, band selection method is proposed based on the information quantity, many effective features are acquired for the classification by defining the linear transformation selecting the projection axis, accordingly, accurate interpretation of images is possible in the reflectance image and automatic feature selection method is realized. Feature images from reflectance images are also classified by ISODATA and combined with the result from fluorescence images. Experimental result indicates that improved performance in term of reducing false detection rate is observed.

Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

  • Go, Seung-Hwan;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.699-717
    • /
    • 2021
  • South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V)stage and the reproductive (R)stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

Estimating Moisture Content of Cucumber Seedling Using Hyperspectral Imagery

  • Kang, Jeong-Gyun;Ryu, Chan-Seok;Kim, Seong-Heon;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong-Hyeon;Kim, Dong Eok;Ku, Yang-Gyu
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.273-280
    • /
    • 2016
  • Purpose: This experiment was conducted to detect water stress in terms of the moisture content of cucumber seedlings under water stress condition using a hyperspectral image acquisition system, linear regression analysis, and partial least square regression (PLSR) to achieve a non-destructive measurement procedure. Methods: Changes in the reflectance spectrum of cucumber seedlings under water stress were measured using hyperspectral imaging techniques. A model for estimating moisture content of cucumber seedlings was constructed through a linear regression analysis that used the moisture content of cucumber seedlings and a normalized difference vegetation index (NDVI). A model using PLSR that used the moisture content of cucumber seedlings and reflectance spectrum was also created. Results: In the early stages of water stress, cucumber seedlings recovered completely when sub-irrigation was applied. However, the seedlings suffering from initial wilting did not recover when more than 42 h passed without irrigation. The reflectance spectrum of seedlings under water stress decreased gradually, but increased when irrigation was provided, except for the seedlings that had permanently wilted. From the results of the linear regression analysis using the NDVI, the model excluding wilted seedlings with less than 20% (n=97) moisture content showed a precision ($R^2$ and $R^2_{\alpha}$) of 0.573 and 0.568, respectively, and accuracy (RE) of 4.138% and 4.138%, which was higher than that for models including all seedlings (n=100). For PLS regression analysis using the reflectance spectrum, both models were found to have strong precision ($R^2$) with a rating of 0.822, but accuracy (RMSE and RE) was higher in the model excluding wilted seedlings as 5.544% and 13.65% respectively. Conclusions: The estimation model of the moisture content of cucumber seedlings showed better results in the PLSR analysis using reflectance spectrum than the linear regression analysis using NDVI.

An Analytical Investigation on the Dancheong Pigments by Hyperspectral Technique: Focusing on Green Colors

  • Jung, Cham Hee;Lee, Han Hyoung;Song, You Na;Min, Kyeong Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.345-361
    • /
    • 2019
  • This study demonstrates the application of hyperspectral analysis as a pigment identification method for modern and contemporary Dancheong, the polychrome surface on traditional Korean wooden buildings. In particular, green pigments are the focus of this study. Green pigments in modern and contemporary Dancheong have the largest variation of materials and show a noticeable timeline. Thus, they are most suitable for estimating the manufacture or restoration period of Dancheong. Hyperspectral analysis is a noncontact, long-distance measurement technique that has advantages in the field of Dancheong analysis. It is capable of identifying both organic and inorganic pigments, unlike existing analysis methods. For this experiment, green and other pigments used during the modern and contemporary era were selected and made into painted samples under various mixing conditions that reflect their actual uses. Through hyperspectral analysis, their reflectance characteristics were observed, which enables the derivation of four main features that can distinguish the type of pigments used for color mixture. Based on these, a pigment identification system was designed in the form of a flowchart, and its utility was confirmed through site application. Despite some limitations at this stage, the technique can be complemented by considering proper measurement methods or the continuous accumulation of samples and data. If a database on various materials, mixing ratios, painting techniques, and other external interference factors is developed in future research, it would provide the foundation for a faster and safer analysis environment of Dancheong sites.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.