• 제목/요약/키워드: hyperplane projection

검색결과 3건 처리시간 0.018초

IHP 알고리즘을 이용한 SIMO 시스템용 적응 직접 결정 등화기 연구 (An Adaptive Decision-Directed Equalizer using Iterative Hyperplane Projection for SIMO systems)

  • 이원철
    • 한국통신학회논문지
    • /
    • 제30권1C호
    • /
    • pp.82-91
    • /
    • 2005
  • 본 논문은 iterative hyperplane projection 을 이용한 효율적인 APA(affine projection algorithm)을 소개한다. 다양한 적응 알고리즘들 중 APA는 랭크 부족 문제를 해결하며 고속 수렴의 특성 때문에 다양한 응용분야에 적용되고 있다. SIMO(Single-Input-Multiple-Output) 시스템을 위한 STDE(Space-Time Decision- directed Equalizer) 적용 시 흔히 단일 채널 환경에서 발생하는 "shifting invariance property"를 이용할 수 없으므로 인해 FTF(Fast Transversal Filter)와 같이 저 복잡도를 갖는 고속 적응 알고리즘을 사용할 수 없다. 따라서 APA 기반의 STDE 기능을 수행하는 과정에서 SMI(Sample Matrix Inversion) 처리가 불가피하며, 계산상의 복잡도가 증가하게 된다. 이러한 문제점을 해결하고자 본 논문에서는 APA 기법 고유의 우수한 추적 특성 및 고속 수렴 성질을 유지하면서, 낮은 복잡도를 갖는 IHP(Iterative Hyperplane Projection) 알고리즘 기반의 효율적인 수정 APA 기법을 소개한다. 제안된 IHP 기반 APA 기법의 성능을 확인하기 위하여, 무선 SIMO 채널 환경 하에서 제안된 IHP-APA 알고리즘을 적용한 STED에 대한 비트 에러 오률 (BER) 특성과 계산량 분석을 통해서 우수성을 입증하였다.

A NEW PROJECTION ALGORITHM FOR SOLVING A SYSTEM OF NONLINEAR EQUATIONS WITH CONVEX CONSTRAINTS

  • Zheng, Lian
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.823-832
    • /
    • 2013
  • We present a new algorithm for solving a system of nonlinear equations with convex constraints which combines proximal point and projection methodologies. Compared with the existing projection methods for solving the problem, we use a different system of linear equations to obtain the proximal point; and moreover, at the step of getting next iterate, our projection way and projection region are also different. Based on the Armijo-type line search procedure, a new hyperplane is introduced. Using the separate property of hyperplane, the new algorithm is proved to be globally convergent under much weaker assumptions than monotone or more generally pseudomonotone. We study the convergence rate of the iterative sequence under very mild error bound conditions.

Relevance-Weighted $(2D)^2$LDA Image Projection Technique for Face Recognition

  • Sanayha, Waiyawut;Rangsanseri, Yuttapong
    • ETRI Journal
    • /
    • 제31권4호
    • /
    • pp.438-447
    • /
    • 2009
  • In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.