• 제목/요약/키워드: hyperplane

검색결과 118건 처리시간 0.031초

수리계획법을 이용한 서포트 벡터 기계 방법에 관한 연구 (Study on Support Vector Machines Using Mathematical Programming)

  • 윤민;이학배
    • 응용통계연구
    • /
    • 제18권2호
    • /
    • pp.421-434
    • /
    • 2005
  • 기계학습은 패턴분류의 한 도구로써 광범위하게 연구되고 있다. 기계학습 방법들 중에서 서포트 벡터 기계(Support Vector Machines)는 많은 분야에서 연구되어지는 것으로 이진 패턴 분류문제에서 고차원의 특징공간에서 두 집합들 사이에 가장 큰 분리를 제공하는 최대 여유도(margin)를 가지는 분리 초평면을 찾는 것이다. 최대 여유도의 분리의 개념에 기초하여 Mangasarian(1968)은 다중-표면 방법(multi-surface method)을 제안하였고, 1980년대에 목적 계획법을 이용한 방법들이 광범위하게 개발되었다. 본 논문에서는 다목적 계획법과 목적 계획법을 이용한 수리계획법인 서포트 벡터 기계의 두가지 방법들을 제안하고 수치 예제들을 통하여 효용성에 대하여 논의하고자 한다.

연속형 속성을 갖는 인공 신경망의 규칙 추출 (Extracting Rules from Neural Networks with Continuous Attributes)

  • 바트셀렘;이완곤;전명중;박현규;박영택
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.22-29
    • /
    • 2018
  • 지난 수십 년 동안 인공 신경망은 음성 인식에서 이미지 분류에 이르기까지 수많은 분야에서 성공적으로 사용되었다. 그러나 인공 신경망은 특정 결론이 어떻게 도출되었는지 알 필요가 있음에도 불구하고 이러한 결과를 설명할 수 있는 능력이 부족하다. 대부분의 연구는 신경망에서 이진 규칙을 추출하는데 초점을 맞추고 있지만, 기계 학습 응용 프로그램에 사용되는 데이터는 연속된 값이 포함되어 있기 때문에 실용적이지 않은 경우가 있다. 이러한 격차를 줄이기 위해 본 논문에서는 연속된 값이 포함된 데이터로부터 학습된 신경망에서 논리 규칙을 추출하는 알고리즘을 제안한다. 초평면 기반 선형 분류기를 사용하여 입력 및 은닉 층 사이에서 학습된 가중치로부터 규칙을 추출하고, 비선형 분류 규칙을 생성하기 위해 은닉 층과 출력 층에서 학습된 이진 규칙과 분류기를 결합한다. 비선형 연속값으로 구성된 여러 데이터셋을 대상으로 진행한 실험에서 제안하는 방법이 논리적 규칙을 정확하게 추출할 수 있음을 보였다.

Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법 (Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine)

  • 이한수;김은경;김성신
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.665-670
    • /
    • 2014
  • SVM은 학습 데이터를 두 개의 집단으로 분리시키는 최적의 초평면을 찾는 이진 분류기로서 우수한 성능 때문에 다양한 분야에서 귀납 추론, 이진 분류, 예측 등을 목적으로 사용되는 알고리즘이다. 또한 대표적인 블랙박스 모델 중 하나이기 때문에 학습 후 생성되는 SVM의 해석에 대한 연구도 활발히 진행되고 있다. 본 논문에서는 SVM 알고리즘을 이용하여 기상 레이더의 데이터 내에 비교적 높은 빈도로 발생하여 기상 예보의 정확도를 감소시키는 비강수에코 중 하나인 선에코를 자동으로 탐지하는 방법에 대한 연구를 수행하였다. 학습 데이터로는 평균 반사도, 크기, 발생 형태, 중심 고도 등과 같은 특성을 활용하였는데, 이는 기상 레이더 데이터에 저장된 다양한 데이터 중 반사도 값을 선택한 후 클러스터링 기법을 통해 추출한 것이다. 이와 같이 학습된 SVM 분류기를 실제 사례를 바탕으로 하여 검증하였으며, Decision Tree 알고리즘을 적용하여 생성한 분류기의 해석을 수행하였다.

회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법 (A New Image Analysis Method based on Regression Manifold 3-D PCA)

  • 이경민;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.103-108
    • /
    • 2022
  • 본 논문에서는 회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법을 제안한다. 제안된 방법은 대용량 이미지 데이터 입력 시 효율적인 차원 축소를 위해 개선된 매니폴드 3-D PCA와 PCA의 비선형 확장이 가능한 오토인코더를 기반으로 설계된 구조로 회귀분석 알고리즘으로 구성된 새로운 이미지 분석 방법이다. 오토인코더의 구성으로는 이미지 픽셀 값을 3차원 회전을 통한 최전의 초평면을 도출하는 회귀 매니폴드 3-D PCA와 딥러닝 구조와 유사한 Bayesian Rule 구조를 적용한다. 성능 검증을 위해 실험을 수행한다. 미세먼지 이미지를 활용하여 이미지를 향상되며, 이를 분류 모델을 통한 정확도 성능 평가를 수행한다. 그 결과 딥러닝 성능에 유효함을 확인할 수 있다.

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.

영상처리기반 야간 젖은 노면 판별을 위한 방법론 (The Method of Wet Road Surface Condition Detection With Image Processing at Night)

  • 김영민;백남철
    • 대한교통학회지
    • /
    • 제33권3호
    • /
    • pp.284-293
    • /
    • 2015
  • 본 연구의 목적은 도로상에 설치된 CCTV에서 수집되는 영상정보를 이용하여 노면 상태를 판단하는 것이다. 이를 위해 먼저 야간의 젖은 노면을 검지하는 기술을 검증하였다. 지금까지 도로상의 젖음 정보를 추출하는 기술은 편광(polarization) 특성을 활용하는 것이다. 그러나 태양광이 없는 야간 도로상황에서는 편광특성을 활용할 수 없다. 이에 본 연구에서는 CCTV 야간 영상의 특징을 활용하여 마른 노면과 젖은 노면을 판별하는 방법을 제안한다. 노면의 젖음 여부를 판단하는 판별 방법론으로 웨이블릿(wavelet) 패킷 변환을 활용한 질감분석 방법론 및 영상의 명도분포 특성을 반영하기 위한 HSI 색상 모형 기반 명도(intensity) 히스토그램 활용 방법론을 적용하였다. 현장장비에서 취득한 총 200장의 샘플영상을 활용하여 영상을 분석, SVM (Support Vector Machine) 분류기 기반 판별 초평면을 구성한 후, 검지 기법을 검증하기 위한 현장테스트를 수행하였으며 유의한 결과를 얻을 수 있었다. 본 연구결과는 교통류의 안전성 향상을 위한 효율적인 야간 노면상태 수집에 활용될 수 있을 것이다.

회사채 신용등급 예측을 위한 SVM 앙상블학습 (Ensemble Learning with Support Vector Machines for Bond Rating)

  • 김명종
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.29-45
    • /
    • 2012
  • 회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.