• Title/Summary/Keyword: hyperpigmentation

Search Result 153, Processing Time 0.027 seconds

Disease presentation and surgical treatment of patients with foreign-body granulomas and ASIA syndrome: case series

  • Lopez-Mendoza, Javier;Vargas-Flores, Edgar;Mouneu-Ornelas, Nicole;Altamirano-Arcos, Carlos
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.366-372
    • /
    • 2021
  • Background The result of illicit polymer injection is chronic inflammation with foreign-body granuloma (FBG) formation. Treatment can be divided into medical and surgical. Some patients develop severe complications with need surgical treatment. This study aims to describe patients who underwent surgical removal of the FBGs and autoimmune/inflammatory syndrome induced by adjuvants (ASIA); additionally, we evaluated the quality of life after surgery. Methods In this retrospective single-center study, the authors examined data of patients who underwent surgical removal of FBG caused by illicit polymer injection for cosmetic purposes and confirmed ASIA from 2015 to 2020 by three different surgical approaches. Descriptive summary statistics were reported on patient demographics, presenting symptoms and clinical examination features, treatment strategies, histopathology reports and quality of life. Results The cohort included 11 female patients with FBGs and ASIA. The most affected anatomical zones were the combination of gluteal region, thighs and legs (40%); and thighs with legs (20%). Main presentation was: skin hyperpigmentation (90.9%), skin induration (63.6%), chronic fatigue (63.6%), and ulcers (36.4%). Surgical modalities consisted of: ultrasonic-assisted liposuction in four patients (36.4%); open en bloc excision and primary closure in four patients (36.4%); and open en bloc excision and microsurgical reconstruction in three patients (27.2%). The postoperative quality of life visual analog scale score was 83.9. Conclusions ASIA treatment represents a challenge for the plastic surgeon. Adequate surgical treatment emphasizing, when possible, the total or near-total resection of the FBG must be performed to improve ASIA evolution.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes

  • Woo, Joo Han;Nam, Da Yeong;Kim, Hyun Jong;Hong, Phan Thi Lam;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.87-94
    • /
    • 2021
  • Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.

The Effect of γ-Aminobutyric Acid Intake on UVB- Induced Skin Damage in Hairless Mice

  • Hairu Zhao;Bomi Park;Min-Jung Kim;Seok-Hyun Hwang;Tae-Jong Kim;Seung-Un Kim;Iksun Kwon;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.640-647
    • /
    • 2023
  • The skin, the largest organ in the body, undergoes age-related changes influenced by both intrinsic and extrinsic factors. The primary external factor is photoaging which causes hyperpigmentation, uneven skin surface, deep wrinkles, and markedly enlarged capillaries. In the human dermis, it decreases fibroblast function, resulting in a lack of collagen structure and also decreases keratinocyte function, which compromises the strength of the protective barrier. In this study, we found that treatment with γ-aminobutyric acid (GABA) had no toxicity to skin fibroblasts and GABA enhanced their migration ability, which can accelerate skin wound healing. UVB radiation was found to significantly induce the production of matrix metalloproteinase 1 (MMP-1), but treatment with GABA resulted in the inhibition of MMP-1 production. We also investigated the enhancement of filaggrin and aquaporin 3 in keratinocytes after treatment with GABA, showing that GABA can effectively improve skin moisturization. In vivo experiments showed that oral administration of GABA significantly improved skin wrinkles and epidermal thickness. After the intake of GABA, there was a significant decrease observed in the increase of skin thickness measured by calipers and erythema. Additionally, the decrease in skin moisture and elasticity in hairless mice exposed to UVB radiation was also significantly restored. Overall, this study demonstrates the potential of GABA as functional food material for improving skin aging and moisturizing.

Anti-melanogenic Activity of Extracts from Carex pumila Thunb. Inhabiting Along the Nakdong River (Republic of Korea)

  • Mirissa Hewage Dumindu Kavinda;Mi-Hwa Lee;Chang-Hee Kang;Yung Hyun Choi;Gi-Young Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.118-118
    • /
    • 2022
  • Carex pumila Thunb. is a plant native to East Asia, Australia, and New Zealand. However, its effect on skin melanogenesis has not been investigated. In the present study, we evaluated its anti-melanogenic properties using B16F10 melanoma cells and zebrafish larvae in the presence or absence of α-melanocyte stimulating hormone (α-MSH). In this study we revealed that concentrations below 50 µg/mL did not induce any cytotoxicity in B16F10 melanoma cells and cardiotoxicity in zebrafish larvae. However, 50 µg/mL treatment significantly inhibited α-MSH-induced extracellular (from 181.24% α 0.62% to 105.15% α 0.31%) and intracellular melanin contents (from 119.8% α 1.2% to 53.4% α 1.7%) as well as intracellular tyrosinase activity (from 143.9% α 4.2% to 103.7% α 1.4%) in B16F10 melanoma cells. At 25 µg/mL and 50 µg/mL concentrations, it could significantly inhibit α-MSH induced hyperpigmentation in zebrafish larvae (from 100% α 2.3% to 60.7% α 1.3% and 47.5% α 1.9% respectively). Additionally, the extract suppressed α-MSH-induced cAMP-CREB-MITF signaling pathway and consequently inhibited tyrosinase expression in B16F10 melanoma cells. In conclusion, our results indicate that this plant extract could suppress the cAMP-CREB-MITF axis which consequently inhibits tyrosinase mediated melanogenesis.

  • PDF

Ethanol Extracts from the Roots of Reed Prevent Skin Hyperpigmentation, Wrinkle Formation and Dryness

  • Sung Hyeok Kim;Sohee Jang;Hyun Jung Koo;Seung Namkoong;Sungsil Hong;Mi-Ja Kim;Chang Woo Ha;Hyosun Lim;Youn Kyu Kim;Eun-Hwa Sohn
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.49-49
    • /
    • 2021
  • The roots of reed (Phragmites australis) were used in traditional medicine to treat respiratory problems, including symptoms such as high fever and cough. In this study, we identified the active ingredient from 70% EtOH reed root extract, and evaluated the whitening, wrinkle improvement and moisturizing effects. The content of p-coumaric acid, the active ingredient of the roots of P. australis, was slightly lower in 70% EtOH extract than in 100% EtOH extract. However, 70% EtOH reed root extract showed similar or higher effect in reducing power, DPPH, hydrogen peroxide scavenging, and nitric oxide scavenging activity compared to 100% EtOH extract. Moreover, 70% EtOH reed root extract markedly inhibited melanogenesis in B16F10 cells treated with α-melanocyte-stimulating hormone. 70% EtOH reed root extract significantly inhibited the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced elastase activity in HDF human dermal fibroblasts. In addition, 70% EtOH reed root extract ameliorated hyaluronic acid synthase-2 (HAS-2) expression induced by ultraviolet B (UVB) stimulation in HaCaT keratinocytes. The results of this study suggest that 70% EtOH reed root extract has potential as a functional cosmetic material related to whitening, wrinkle improvement, and moisturizing.

  • PDF

Inhibitory Effect of Pinus rigida × Pinus taeda on Melanogenesis in B16 F10 Cells

  • Woo-Jin Oh;Seo-Yoon Park;Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.56-56
    • /
    • 2023
  • The cone of Pinus rigida × Pinus taeda (PRT), a plant in the Pinaceae family, has long been used in traditional medicine to treat hemostasis, bruises, and burns. Previous research has shown that regulating oxidation-reduction reactions in reactive oxygen species can help inhibit melanogenesis, the process of melanin synthesis, which is a common target for addressing hyperpigmentation. Inhibiting tyrosinase is also known to be effective in this regard. Based on these findings, we conducted an investigation into the inhibitory effect of the ethyl acetate fraction of PRT (ERT) on melanogenesis in B16 F10 cells. We know that the expression levels of melanin biosynthesis-related proteins, including tyrosinase, TRP-1, and TRP-2, are regulated by MITF (microphthalmia-associated transcription factor) and cAMP, with cAMP affecting the activity of protein kinase A (PKA). PKA can reduce melanogenesis, and CREB reduces the phosphorylation of melanin-producing enzymes. In addition, the MAPK signaling pathway, composed of ERK, JNK, p38, and other factors, is also known to play a role in the inhibition of melanogenesis in melanocytes. Our immunoblotting results showed that ERT inhibited the expression of melanin production-related proteins (tyrosinase, TRP-1, TRP-2, and MITF) that were significantly increased by a-MSH treatment to promote melanin production. Furthermore, the phosphorylation levels of factors related to cAMP/PKA/CREB and MAPK signaling pathways were significantly reduced without affecting the total form. In conclusion, we believe that treatment with ERT can inhibit melanin synthesis by modulating the phosphorylation of cAMP/PKA/CREB and MAPK signaling pathways at the cellular level. These findings suggest the potential of ERT as a raw material for functional cosmetics and pharmaceuticals, thanks to its antioxidant activity and ability to inhibit melanogenesis. We thought that these findings of ERT as a natural plant resource will inspire further research and development in this area.

  • PDF

Anti-inflammatory and Tyrosinase Inhibition Effects of Amaranth (Amaranthus spp L.) Seed Extract (아마란스 씨앗 추출물의 항염 및 Tyrosinase 억제 효과)

  • Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • This study examined the anti-inflammatory and whitening effects of Amaranth (Amaranthus spp L.) seed extract. Amaranthus spp L. seeds were extracted using 70% ethanol and then fractionated sequentially with n-hexane, dichloromethan, ethyl acetate and butanol. For the study of anti-inflammatory activity in RAW 264.7 cells, EtOAc fraction of Amaranthus spp L. seeds significantly inhibited nitrogen oxide production as well as the protein level of iNOS. Furthermore, EtOAc fraction of Amaranthus spp L. seeds inhibited expression of $TNF-{\alpha}$, PGE2 and the protein level of COX-2 in a dose-dependent manner. Inaddition, the tyrosinase inhibitory activities of the Amaranthus spp L. seed 70% ethanol extract and subfractions were also measured to see if these extracts can be used as an ingredient for whitening cosmetics. Tyrosinase is an oxidase that is a rate-limiting enzyme for controlling the production of melanin. Therefore, tyrosinase inhibitors have become increasingly important in cosmetics and medical products with regards to hyperpigmentation. EtOAc fraction of Amaranthus spp L. seeds showed mushroom tyrosinase inhibitory activity in a dose-dependent manner. This activity was more potent than that of a positive control cynandione A. These results suggest that Amaranthus spp L. seeds may be a valuable natural ingredient for the food and cosmetics industries.

Effect of the Ethanol Extract from Lavandula vera on ${\alpha}$-MSH Induced Melanogenesis (라벤더 에탄올 추출물이 ${\alpha}$-MSH 유도 멜라닌 생성에 미치는 효과)

  • Kim, Ho-Min;Jang, Yeong-Mi;Han, Kyu-Soo;Moon, Dea-Won;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1444-1448
    • /
    • 2008
  • Down-regulation of melanin synthesis is required for recovery of pigmentary disorders and it is well known that ${\alpha}$-MSH induced melanin synthesis and dendrite outgrowth on melanocytes. This study was conducted to evaluate the depigmenting properties of ethanol extract from a Lavandula vera. The ethanol extract from Lavandula vera inhibited melanin contents and tyrosinase activity in a dose-dependent manner, compared with untreated group. Treatment of the ethanol extract of Lavandula vera effectively suppressed the ${\alpha}$-MSH-stimulated melanin formation, tyrosinase activity and dendrite outgrowth. Moreover, the ${\alpha}$-MSH-induced mRNA expression of tyrosinase was significantly attenuated by Lavandula vera treatment. These results suggest that Lavandula vera exerts its depigmenting effects through the suppression of tyrosinase and cytoplasmic dendricity. And it may be a potent depigmetation agent in hyperpigmentation condition.

Study of Skin Depigmenting Mechanism of the Ethanol Extract of Fagopyrum esculentum (교맥 에탄올 추출물의 피부 미백기전 연구)

  • No, Seong-Taek;Kim, Dae-Sung;Lee, Seong-Jin;Park, Dae-Jung;Lee, Jang-Cheon;Lim, Kyu-Sang;Woo, Won-Hong;Mun, Yeun-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1243-1249
    • /
    • 2007
  • The aim of this study was to investigate the effect of ethanol extract of Fagopyrum esculentum on the melanogenesis. To determine whether ethanol extract of Fagopyrum esculentum suppress melanin synthesis in cellular level, B16F10 melanoma cells were cultured in the presence of different concentrations of Fagopyrum esculentum ethanol extract. In the present study, we examined the effects of Fagopyrum esculentum ethanol extract on cell proliferation, melanin contents, tyrosinase activity, expression of melanogenic enzyme proteins including tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2). Cell proliferation was slightly increased by treatment with ethanol extract of Fagopyrum esculentum $(25-200 {\mu}g/m{\ell}).$ The ethanol extract of Fagopyrum esculentum effectively suppressed melanin contents at a dose of $100 {\mu}g/m{\ell}).$ It was observed that the color of cell pellets was totally whitened compared with the control. The ethanol extract of Fagopyrum esculentum inhibited tyrosinase activity, regulate melanin biosynthesis as the key enzyme in melanogenesis. Using western blot analysis, the ethanol extract of Fagopyrum esculentum dose-dependently decreased tyrosinase and TRP-1 protein levels, and tyrosinase and TRP-1 were detected in similar manner. ${\alpha}-MSH$ leads to a stimulation of melanin synthesis through increase of tyrosinase activity, melanin contents and cytoplasmic dendricity. In this study, ethanol extract of Fagopyrum esculentum down-regulated the ${\alpha}-MSH$-induced tyrosinase activity, melanin contents and cytoplasmic dendricity. Regarding protein levels of the melanogenic enzymes, the amounts of tyrosinase and TRP-1 was increased after incubation with a-MSH. The treatment of ethanol extract of Fagopyrum esculentum decreased the ${\alpha}-MSH$-induced expression levels of tyrosinase and TRP-1. These results suggest that the ethanol extract of Fagopyrum esculentum exerts its depigmenting effects through the suppression of tyrosinase, TRP-1 and cytoplasmic dendricity. And it may be a potent depigmetation agent in hyperpigmentation condition.