• 제목/요약/키워드: hypernodulating genes

검색결과 4건 처리시간 0.022초

Molecular Characterization of Hypernodulation in Soybean

  • Van, Kyu-Jung;Ha, Bo-Keun;Hwang, Eun-Young;Kim, Moon-Young;Heu, Sung-Gi;Lee, Suk-Ha
    • The Plant Pathology Journal
    • /
    • 제19권1호
    • /
    • pp.24-29
    • /
    • 2003
  • SS2-2, a hypernodulating soybean mutant was isolated by EMS mutagenesis from Sinpaldalkong 2. This auto-regulation mutant showed greater number of nodules and smaller plant size than its wild type Sinpaldalkong 2. SSR markers were used to identify DNA variation at SSR loci from different soybean LG. The only SSR marker that detected a length polymorphism between SS2-2 and its wild type ancestor was Satt294 on LG C1 instead of LG H, locating a hypernodulating gene. Sequencing data of flanking Satt294 indicated that the size variation was due to extra stretch of TTA repeats of the SSR motif in SS2-2, along with $A\longrightarrow$G transversion. In spite of phenotypic differences between the wild type and its hypernodulating mutants, genomic DNA poly-morphisms at microsatellite loci could not control regulation of nodule formation. The cDNA-AFLP method was applied to compare differential display of cDNA between Sinpaldalkong 2 and SS2-2. After isolation and sequence comparison with many AELP fragments, several interesting genes were identified. Northern blot analysis, immunolocalization and/or the yeast two-hybrid system with these genes might provide information on regulation of nodule development in SS2-2.

Construction of a Bacterial Artificial Chromosome Library Containing Large BamHI Genomic Fragments from Medicago truncatula and Identification of Clones Linked to Hypernodulating Genes

  • Park So-Yeon;Nam Young-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.256-263
    • /
    • 2006
  • In the model legume Medicago truncatula, two mutants, sickle and sunn, exhibit morphologically and genetically distinct hypernodulation phenotypes. However, efforts to isolate the single recessive and single semidominant genes for sickle and sunn, respectively, by map-based cloning have so far been unsuccessful, partly due to the absence of clones that enable walks from linked marker positions. To help resolve these difficulties, a new bacterial artificial chromosome (BAC) library was constructed using BamHI-digested genomic fragments. A total of 23,808 clones were collected from ligation mixtures prepared with double-size-selected high-molecular-weight DNA. The average insert size was 116 kb based on an analysis of 88 randomly selected clones using NotI digestion and pulsed-field gel electrophoresis. About 18.5% of the library clones lacked inserts. The frequency of the BAC clones carrying chloroplast or mitochondrial DNA was 0.98% and 0.03%, respectively. The library represented approximately 4.9 haploid M. truncatula genomes. Hybridization of the BAC clone filters with a $C_{0}t-l$ DNA probe revealed that approximately 37% of the clones likely carried repetitive sequence-enriched DNA. An ordered array of pooled BAC DNA was screened by polymerase chain reactions using 13 sequence-characterized molecular markers that belonged to the eight linkage groups. Except for two markers, one to five positive BAC clones were obtained per marker. Accordingly, the sickle- and sunn-linked BAC clones identified herein will be useful for the isolation of these biotechnologically important genes. The new library will also provide clones that fill the gaps between preexisting BAC contigs, facilitating the physical mapping and genome sequencing of M. truncatula.

Genetic Mapping of Hypernodulation in Soybean Mutant SS2-2

  • Lee, Suk-Ha;Ha, Bo-Keun
    • 한국작물학회지
    • /
    • 제46권5호
    • /
    • pp.416-419
    • /
    • 2001
  • Hypernodulation soybean mutant, SS2-2, is characterized with greater nodulation and nitrogen fixing ability in the root nodule than its wild type, Shinpaldalkong 2. The present study was performed to identify a genetic locus conferring hypernodulation in soybean mutant SS2-2 and to determine whether the gene controlling the hypernodulation of SS2-2 is allelic to that controlling the supernodulation of nts382 mutant. Hybridization studies between SS2-2 and Taekwangkong revealed that the recessive gene was responsible for the hypernodulation character in soybean mutant SS2-2. Allelism was also tested by crossing supernodulating mutant nts382 and hypernodulating mutant SS2-2 that both hypernodulation and supernodulation genes were likely controlled by an identical locus. Molecular marker mapping of hypernodulation gene in SS2-2 using SSR markers confirmed that the gene conferring hypernodulation was located at the same loci with the gene conferring supernodulation. It is interesting to note that the same gene controlled the super- and hyper-nodulation characters, although SS2-2 and nts 382 exhibited differences in the amount of nodulation in the root system. Further genetic studies should be needed to clarify the genetic regulation of super- and hyper-nodulation in soybean.

  • PDF

The Hypernodulating nts Mutation Induces Jasmonate Synthetic Pathway in Soybean Leaves

  • Seo, Hak Soo;Li, Jinjie;Lee, Sun-Young;Yu, Jae-Woong;Kim, Kil-Hyun;Lee, Suk-Ha;Lee, In-Jung;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.185-193
    • /
    • 2007
  • Symbiotic nitrogen fixation with nitrogen-fixing bacteria in the root nodules is a distinctly beneficial metabolic process in legume plants. Legumes control the nodule number and nodulation zone through a systemic negative regulatory system between shoot and root. Mutation in the soybean NTS gene encoding GmNARK, a CLAVATA1-like serine/threonine receptor-like kinase, causes excessive nodule development called hypernodulation. To examine the effect of nts mutation on the gene expression profile in the leaves, suppression subtractive hybridization was performed with the trifoliate leaves of nts mutant 'SS2-2' and the wild-type (WT) parent 'Sinpaldalkong2', and 75 EST clones that were highly expressed in the leaves of the SS2-2 mutant were identified. Interestingly, the expression of jasmonate (JA)-responsive genes such as vspA, vspB, and Lox2 were upregulated, whereas that of a salicylate-responsive gene PR1a was suppressed in the SS2-2 mutant. In addition, the level of JA was about two-fold higher in the leaves of the SS2-2 mutant than in those of the WT under natural growth conditions. Moreover, the JA-responsive gene expression persists in the leaves of SS2-2 mutant without rhizobia infection in the roots. Taken together, our results suggest that the nts mutation increases JA synthesis in mature leaves and consequently leads to constitutive expression of JA-responsive genes which is irrelevant to hypernodulation in the root.