• Title/Summary/Keyword: hyperion

Search Result 68, Processing Time 0.023 seconds

Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.21-32
    • /
    • 2007
  • Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.

Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법 (Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image)

  • 최재완;김용일;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

극단화소 기반의 Hyperion 데이터 밴드선택 (Extrema-based Band Selection for Hyperion Data)

  • 한동엽;김대성;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.193-198
    • /
    • 2006
  • Among 242 Hyperion bands, there are 46 bands that contain completely no information and some other bands with various kinds of noise. It is mainly due to the atmosphenc absorption and the low signal-to-noise ratio. The visual inspection for selecting clean and stable bands is a simple practice, but is a manual, inefficient, and subjective Process. Though uncalibrated, overlapping, and all deep water absorption bands are removed, there still exist noisy bands. In this paper, we propose that the extrema ratio be measured for noise estimation and the unsupervised band selection be performed using the Expectation-Maximization algorithm. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The accuracy of the proposed method was compared with signal-to-noise ranking and entropy ranking. As a result, the proposed mettled was effective as preprocessing step for band selection.

  • PDF

프랙탈 차원을 이용한 Hyperion 초분광 영상의 자동 노이즈 밴드 제거 (Automatic Noise Band Elemination of Hyperion Hyperspectral Image using Fractal Dimension)

  • 장안진;김용일
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 춘계학술대회 논문집
    • /
    • pp.219-223
    • /
    • 2008
  • 초분광 영상은 기존의 다중분광 영상보다 많은 파장대의 영상을 취득하기 때문에 다양한 분야의 연구에 이용되고 있다. 하지만 밴드별로 취득하는 파장대가 짧고 밴드수가 많아, 밴드간의 높은 상관관계 및 노이즈 밴드가 존재한다. 이로 인해 기존에 알려진 분석기법의 적용결과가 제대로 도출되지 않는다. 따라서 초분광 영상을 이용할 경우, 노이즈가 많이 포함된 밴드를 제거한 후 영상분석을 하는 것이 보다 효율적이다. 본 연구에서는 초분광 영상(Hyperspectral Image)의 전처리 과정 중 노이즈 밴드 제거에 초점을 맞추었으며, 이를 위해 프랙탈 차원을 이용하였다. 프랙탈 차원 측정방법 중 삼각기둥 표면적 기법을 이용하였다. 프랙탈 차원을 측정하고, Continuum Removal 기법을 이용하여 경향을 살펴보았다. 경험적으로 구한 임계값을 통해 상대적으로 정보량이 적은 밴드를 노이즈 밴드로 판단하여 제거하였다. 실험 영상으로는 EO-1 위성에서 취득되는 Hyperion 초분광 영상을 사용하였다. 실험 결과 프랙탈 분석을 통해 Hyperion 초분광 영상의 노이즈 밴드를 자동으로 추출하여 제거할 수 있음을 확인하였다.

  • PDF

프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거 (Noise Band Elemination of Hyperion Image using Fractal Dimension and Continuum Removal Method)

  • 장안진;김용일
    • 대한원격탐사학회지
    • /
    • 제24권2호
    • /
    • pp.125-131
    • /
    • 2008
  • Hyperion, AVIRIS 등의 초분광 영상은 기존의 다중분광 영상보다 넓은 파장대의 영상을 좁은 폭의 많은 밴드로 취득하기 때문에 다양한 분야의 연구에 이용되고 있다. 하지만 밴드별로 취득하는 파장대가 짧고 밴드수가 많아 계산량이 증가하며, 밴드간의 높은 상관관계 및 노이즈 밴드가 발생하는 한계가 존재한다. 이런 한계로 인해 기존에 알려진 분석기법의 적용결과가 제대로 도출되지 않는 경우도 발생한다. 따라서 초분광 영상을 사용할 경우, 노이즈가 포함된 밴드를 제거한 후 영상분석을 하는 것이 보다 정확하고 효율적이다. 본 연구에서는 초분광 영상(Hyperspectral Image)의 전처리 과정 중 노이즈 밴드 제거에 초점을 맞추었으며, 이를 위해 프랙탈 차원을 이용하였다. 프랙탈 차원 측정방법 중 대표적인 곡면차원 측정 방법인 삼각기둥 표면적 기법을 이용하였다. 각 밴드별 프랙탈 차원을 측정하고, 이를 정규화 하기 위해 Continuum Removal 기법을 적용한 뒤 경향을 살펴보았다. 경험적으로 구한 임계값을 통해 상대적으로 정보량이 적은 35개 밴드를 노이즈 밴드로 판단하여 제거하였다. 실험 영상으로는 EO-1 위성에서 취득되는 Hyperion 초분광 영상을 사용하였다. 실험 결과 프랙탈 차원 및 Continuum Removal 기법을 통해 Hyperion 초분광 영상의 노이즈 밴드를 추출하여 제거할 수 있음을 확인하였다.

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • 제5권1호
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구 (A Study on Automatic Coregistration and Band Selection of Hyperion Hyperspectral Images for Change Detection)

  • 김대성;김용일;어양담
    • 한국측량학회지
    • /
    • 제25권5호
    • /
    • pp.383-392
    • /
    • 2007
  • 본 연구는 초분광 영상을 이용한 변화탐지 기법의 전처리 과정 중 하나인 영상간 기하보정과 밴드선택에 초점을 맞추고 있다. 최근 그 성능이 입증된 SIFT(Scale-Invariant Feature Transform) 기법을 이용하여 자동화된 기하보정을 수행하였으며, 분광정보의 불변 특성을 반영하는 PIF(Pseudo-Invariant Feature)를 추출하여 영상의 잡음을 추정함으로써, 변화탐지를 위한 유효 밴드를 선택하였다. 또한, 기대최대화(Expectation-Maximization) 기법을 이용한 객관적인 밴드선택 방법을 구현하였다. 제안된 기법들을 실제 적용하기 위해 Hyperion 영상을 사용하였으며, 영상에 나타나는 보정되지 않은 밴드 및 Striping 잡음의 특성을 부가적으로 제거하였다. 결과를 통해, 변화탐지를 위한 최소한의 요구조건인 0.2화소 이내의 정확도(RMSE)를 만족하는 신뢰도 높은 기하보정을 수행할 수 있었으며, 시각적인 판단에 의존하던 밴드선택을 PIF를 통해 객관화할 수 있음을 확인하였다.

IKONOS 영상을 이용한 EO-1 Hyperion Hyperspectral 영상자료의 고해상도 구축 (High Resolution Reconstruction of EO-1 Hyperion Hyperspectral Images Using IKONOS Images)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제24권6호
    • /
    • pp.631-639
    • /
    • 2008
  • 본 연구에서는 상업용 위성에 탑재된 센서에서 감지된 고해상도의 범색 영상과 다중분광 영상을 이용하여 저해상도의 초분광 영상을 고해상도로 재구축하는 방법을 IKONOS영상과 30-1의 Hyperion 영상에 대한 적용을 통하여 제시하고 있다. 제안된 초분광 영상의 고해상도 재구축은 Lee(2008b)에 의해 개발된 FitPAN-Mod를 기반으로 하여 30m 급의 공간해상도의 초분광 영상을 1m 급의 공간해상도의 범색 영상 수준으로 공간해 상도를 향상시킨다. 본 연구에서는 세 번의 FitPAN-Mod를 사용하는 저해상도의 영상의 고해상도 재구축 과정을 걸쳐 범색 영상의 파장구간에 속하는 초분광 영상의 50개 밴드에 대해 재구축이 이루어졌다. 실험 결과는 재구축된 영상은 시각적 평가에서 실험 대상 지역 내 범색 영상이 갖고 있는 자세한 공간적 구조를 잘 표현하고 있으며 저해상도에서 세부적 위치에 따라 구분하여 표현할 수 없는 지표면의 좁은 밴드대역의 분광특성을 잘 표현하고 있음을 보여준다. 이러한 결과는 제안된 재구축 방법이 현재의 센서 기술로 수집할 수 없는 고해상도의 초분광 영상의 대체 영상을 생성할 수 있는 기술로서 잠재력을 갖고 있음을 보여준다.

Hyperion 영상의 분류를 위한 밴드 추출 (Feature Selection for Image Classification of Hyperion Data)

  • 한동엽;조영욱;김용일;이용웅
    • 대한원격탐사학회지
    • /
    • 제19권2호
    • /
    • pp.170-179
    • /
    • 2003
  • 다중분광 영상의 정확한 지형지물 분류를 수행할 때 고려해야 할 중요한 요소중에 적절한 분류 클래스의 선정과 선정된 클래스의 분리도가 높아지도록 트레이닝 지역(training fields)을 잡는 것은 특히 중요하다. 최근에 이용되고 있는 위성탑재 하이퍼스펙트럴(hyperspectral) 영상은 많은 밴드를 포함하고 있기 때문에 데이터 처리가 어렵고, 잡음(noise)으로 인하여 다중분광 영상보다 분류 결과가 나쁜 경우도 나타난다. 특히 대상지역의 클래스에 따른 트레이닝 지역의 선정시 일부 클래스에서 하이퍼스펙트럴 밴드수에 비해 상대적으로 적은 수의 트레이닝 샘플로 인하여 공분산 행렬의 계산에 어려움이 따른다. 따라서 본 연구에서는 Hyperion 데이터를 이용한 분류를 수행하기 위하여 밴드 추출 방식을 알아보고, 분류영상의 정확도 평가를 통하여 밴드 추출의 효용성을 시험하였다. 밴드를 줄이는 또 다른 방법인 클래스간 분리도에 따른 최적 밴드를 추출하여 분류정확도를 평가하였다. 실험 결과, 밴드 추출이나 클래스 분리도에 따라 선택된 영상의 분류 정확도는 분류자(classifier)에 상관없이 전체 밴드를 사용한 원영상과 유사하게 나타났지만, 사용된 밴드수와 계산 시간은 단축되었다. 분류자는 MLC, SAM, ECHO의 3종류가 사용되었다.