• Title/Summary/Keyword: hyperbranched polymer

Search Result 26, Processing Time 0.024 seconds

Hyperbranched poly(ether sulfone) with 1,3,5-s-Triazine Moiety

  • Youngkyu Chang;Kwon, Young-Chul;Park, Kyusoon;Im, Chulhee-K
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.142-146
    • /
    • 2000
  • Hyperbranched poly(ether sulfone) analogs with the 1,3,5-s-triazine moiety were prepared by the direct polymerization of AB$_2$type monomer, 2,4-bis(4-hydroxyphenyl)-6-(4-(4-(4-fluorobenzenesulfonyl)phenoxy)phenyl)-1,3,5-s-triazine (3). The selective reactivity of three chlorine atoms on cyanuric chloride toward nucleophiles provides an efficient route for the systematic synthesis of AB$_2$type triazine monomers and their hyperbranched polymers. The triazine rings influenced the structural and material characteristics of these hyperbranched polymers. The hyperbranched poly(ether sulfone) analog4 showed a glass transition at 295$^{\circ}C$. and was soluble in THF, 1,4-dioxane, and DMSO. An excellent thermal stability of polymer 4 was exhibited by a TGA analysis, which showed that 5% weight loss occurred at 480$^{\circ}C$.

  • PDF

Synthesis of Dendritic Carbosilanes by the Use of Hyperbranched Polymers (Hyperbranched Polymer를 이용한 나뭇가지꼴 카보실란 거대분자의 합성)

  • Kim, Chung Kyun;Kang, Sung Kyung;Park, Eun Mi
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.393-400
    • /
    • 1999
  • Dendritic carbosilanes based on hyperbranched polycarbosilanes as core molecule have been prepared The core molecules were obtained by the use of hydrosilation of $HSiMe_{3-n}$$(CH_2CH=CH_2)_n$(n=2; $AB_2$,3;$AB_3$type). The hyperbranched core $AB_2\;and\; AB_3$ type polymers were generated to higher molecular dendritic carbosilanes Gn+1 by the use of hydrosilation and alkenylation sequence. The Gn+2P generations were not obtained as unified molecules by the use of hydrosilation with $HSiMeCl_2$. Gn and Gn+1 type polymers were produced to polysilol by the reaction of 9-BBN and alkali medium oxidation of hydroborated compounds. The degree for reaction has been controlled by the NMR spectroscopy.

  • PDF

Linear and Hyperbranched Polymers via Electrophilic Substitution Reaction in Polyphosphoric $Acid/P_{2}O_{5}$

  • Choi, Ja-Young;Jeon, In-Yeop;Tan, Loon-Seng;Baek, Jong-Beom
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.195-195
    • /
    • 2006
  • A superior electrophilic substitution reaction medium that is non-toxic, relatively less corrosive, and non-volatile electrophilic substitution reaction to afford high molecular weight linear and hyperbranched polyetherketones (PEK' s) was developed. The system has very strong driving force to give extra ordinary high molecular weight linear and hyperbranched PEK' s. The reaction medium was further extended to prepare various types of copolymers and covalently grafted polymers onto carbon nanotube (CNT) or carbon nanofiber (CNF). By using characteristic hydrophilic nature of the reaction medium, hyperbranched PEK' s could be synthesized from commercially available $A_3\;+\;B_2$ monomers without network formation via selective solubility of the monomers.

  • PDF

Synthesis and Characterization of Aliphatic Hyperbranched Polyesters (지방족 고차가지구조 폴리에스테르의 합성 및 물성)

  • Kim Jang-Yup;Ok Chang-Yul;Lee Sang-Won;Huh Wansoo
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.575-580
    • /
    • 2005
  • The hydroxy terminated aliphatic hyperbranched polyesters having different generations were synthesized by using melt polycondensation procedure. Then, the terminal groups of hyperbranched polyesters were modified by using acryloyl chloride and characterized by $\^{1}H$-NMR and GPC techniques. As a result of the modification of terminal groups for hyperbranched polyesters, the phase of the polymers were changed from sticky solid to high viscous liquid indicating that the glass transition temperatures of modified hyperbranched polyesters were lower than the original one. The thermal stabilities of hydroxy terminated hyperbranched polyesters were higher than those of terminal group-modified polymers.

Preparation and Properties of Hyperbranched Polymers

  • Kakimoto, Masa-Aki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.97-98
    • /
    • 2006
  • After general introduction for hyperbranched polymers, hyperbranched polysiloxysilanes (HBPS) were introduced as new functional polymers. Vinyl terminated HBPS was synthesized starting from AB2 type monomer by hydrosilylation reaction. Vinyl group can be converted various functional groups such as carboxylic acid and alcohol. HBPS had strong interaction to inorganic surface. As an example of this phenomenon, silica gel bead for HPLC was modified with thermo sensitive polymers. The resulting bead was successfully applied to Green Chronatography.

  • PDF

New Hyperbranched Polyimides and Polyamides: Synthesis, Chain-End Functionalizations, Curing Studies, and Some Physical Properties (새로운 Hyperbranchedpolyimidesandpolyamides: 합성, 말단기 변형, 경화 연구, 그리고 물리적 성질)

  • Baek, Jong-Beom;Chris B. Lyon;Tan, Loon-Seng
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.1-2
    • /
    • 2003
  • While aromatic polyimides and polyamides have found widespread use as high performance polymers, the present work addressed the need for organosoluble materials through the use of a hyperbranching scheme. The $AB_2$ monomers were prepared. The $AB_2$ monomers were then polymerized via aromatic fluoride-displacement and Yamazaki reactions to afford the corresponding hydroxyl-terminated hyperbranched polyimides (HT-PAEKI) and amine-terminated hyperbranched polyamides, respectively. HT-FAEKI was then functionalized with allyl and propargyl bromides as well as epichlorohydrin to afford allyl-terminated AT-PAEKI, propargyl-terminated PT-PAEKI, and epoxy (glycidyl)-terminated ET-PAEKI, in that order. All hyperbranched poly(ether-ketone-imide)s were soluble in common organic solvents. AT-PAEKI was blended with a bisphenol-A-based bismaleimide (BFA-BMI) in various weight ratios. Thermal, rheological, and mechanical properties of these blend systems were evaluated. Two characteristic hyperbranched polyamides, which the one has para-electron donating groups to the surface amine groups and the other has para-electron withdrawing groups to the surface amine groups, were selected to compare BMI curing behaviors. The electron rich polymer displayed ordinary Michael addition type exothermic reaction, while electron deficient polymer did display unusual curing behaviors. Based on analytical data, the later system provided the strong evidences to support room temperature curing of BMI by reactive intermediates instead of reactive primary amine groups on the macromolecule surface.

  • PDF

Synthesis and Physical Properties of Hyperbranched Aromatic Polyamide (고차가지구조 방향족 폴리아미드의 합성 및 물성)

  • Ok Chang-Yul;Kim Jang-Yup;Huh Wansoo;Lee Sang-Won
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.571-574
    • /
    • 2005
  • The aromatic hyperbranched polyamide was synthesized from 5-aminoisophthalic acid by direct polycondensation with triphenylphosphite (TPP) catalyst as a condensing agent. The modification of end-groups in the resulting hyperbranched polymer (HBP) with various alkyl alcohols were conducted. The modification of end-groups of HBP by alkyl groups resulted in an improved solubility in the THF comparing to that of the carboxylic acid-terminated aromatic HBP, Also, 10 wt$\%$ weight loss temperature decreased by increasing the length of alkyl group.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

Synthesis and Properties of Photocurable Pentaerythritol Modified Hyperbranched Acrylate (광경화형 Pentaerythritol 변성 초분지형 아크릴레이트의 합성과 물성)

  • Kim Dong Kook;Lim Jin Kyu;Kim Woo Geun;Heo Jung Lim
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.237-241
    • /
    • 2005
  • Photocurable pentaerythritol modified hyperbranched acrylates were prepared from trimellitic anhydride, glycidyl methacrylate and pentaerythritol derivatives. Thermal stability obtained by using TGA showed that HBMA-1 was superior to the others. Hardness, abrasion resistance and tensile strength of HBMA-1 showed that Hey were also superior to the others. Value of yellow index of HBMA-1 showed the lowest.