• 제목/요약/키워드: hyperbolic shear deformation

검색결과 108건 처리시간 0.02초

Finite Element Analysis of Functionally Graded Plates using Inverse Hyperbolic Shear Deformation Theory

  • Kulkarni, Kamlesh;Singh, Bhrigu Nath;Maiti, Dipak Kumar
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.1-4
    • /
    • 2016
  • Functionally graded materials (FGMs) are becoming very popular in various industries due to their effectiveness of the utilization of their constituent elements. However, the modelling of these materials is difficult due to the complex nature of variation of material properties across the thickness. Many shear deformation theories have been developed and employed for the analysis of such functionally graded plates (FGPs). A recently developed inverse hyperbolic shear deformation theory has been successfully employed by Grover et al. [1] for the analysis of laminated composites and sandwich plates. The objective of the study is to obtain finite element solution for the structural analysis of functionally graded plates using inverse hyperbolic shear deformation theory. Finite element analysis facilitates the analysis of complex problems such as functionally graded plates with different boundary conditions and different loadings.

A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams

  • Bensaid, Ismail
    • Advances in nano research
    • /
    • 제5권2호
    • /
    • pp.113-126
    • /
    • 2017
  • This paper proposes a new nonlocal higher-order hyperbolic shear deformation beam theory (HSBT) for the static bending and vibration of nanoscale-beams. Eringen's nonlocal elasticity theory is incorporated, in order to capture small size effects. In the present model, the transverse shear stresses account for a hyperbolic distribution and satisfy the free-traction boundary conditions on the upper and bottom surfaces of the nanobeams without using shear correction factor. Employing Hamilton's principle, the nonlocal equations of motion are derived. The governing equations are solved analytically for the edges of the beam are simply supported, and the obtained results are compared, as possible, with the available solutions found in the literature. Furthermore, the influences of nonlocal coefficient, slenderness ratio on the static bending and dynamic responses of the nanobeam are examined.

Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams

  • Bensaid, Ismail;Cheikh, Abdelmadjid;Mangouchi, Ahmed;Kerboua, Bachir
    • Advances in materials Research
    • /
    • 제6권1호
    • /
    • pp.13-26
    • /
    • 2017
  • In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton's principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory

  • Daouadj, Tahar Hassaine;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.49-63
    • /
    • 2017
  • This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.

A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates

  • Sidhoum, Imene Ait;Boutchicha, Djilali;Benyoucef, Samir;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.303-314
    • /
    • 2018
  • An original quasi-3D hyperbolic shear deformation theory for simply supported functionally graded plates is proposed in this work. The theory considers both shear deformation and thickness-stretching influences by a hyperbolic distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower surfaces of the plate without using any shear correction coefficient. By expressing the shear parts of the in-plane displacements with the integral term, the number of unknowns and equations of motion of the proposed theory is reduced to four as against five in the first shear deformation theory (FSDT) and common quasi-3D theories. Equations of motion are obtained from the Hamilton principle. Analytical solutions for dynamic problems are determined for simply supported plates. Numerical results are presented to check the accuracy of the proposed theory.

Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets

  • Arefi, M.;Meskini, M.
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.459-467
    • /
    • 2019
  • In this paper, hyperbolic shear deformation theory is used for free vibration analysis of piezoelectric rectangular plate made of porous core. Various types of porosity distributions for the porous material is used. To obtain governing equations of motion, Hamilton's principle is used. The Navier's method is used to obtain numerical results of the problem in terms of significant parameters. One can conclude that free vibration responses are changed significantly with change of important parameters such as various porosities and dimensionless geometric parameters such as thickness to side length ratio and ratio of side lengths.

Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow

  • Zheng, Chuanzhang;Yan, Gongxing;Khadimallah, Mohamed Amiine;Nouri, Alireza Zamani;Behshad, Amir
    • Advances in concrete construction
    • /
    • 제13권5호
    • /
    • pp.361-365
    • /
    • 2022
  • The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure two-fluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced.

A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.683-689
    • /
    • 2017
  • In this paper, a hyperbolic shear deformation theory is presented for bending analysis of functionally graded beams. This theory used in displacement field in terms of thickness co-ordinate to represent the shear deformation effects and does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the virtual work principle and the physical neutral surface concept. A simply supported functionally graded beam subjected to uniformly distributed loads and sinusoidal loads are consider for detail numerical study. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

A new refined hyperbolic shear deformation theory for laminated composite spherical shells

  • Kada, Draiche;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.707-722
    • /
    • 2022
  • In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.