• Title/Summary/Keyword: hyper-parameters optimization

Search Result 33, Processing Time 0.021 seconds

Hyper-parameter Optimization for Monte Carlo Tree Search using Self-play

  • Lee, Jin-Seon;Oh, Il-Seok
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.36-43
    • /
    • 2020
  • The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It has several hyper-parameters that require an optimization for showing the best performance. Due to the stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a winner path over the hyper-parameter space while performing the self-play. The top-q longest winners in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in Korean name) showed a promising result.

Comparison of Hyper-Parameter Optimization Methods for Deep Neural Networks

  • Kim, Ho-Chan;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.969-974
    • /
    • 2020
  • Research into hyper parameter optimization (HPO) has recently revived with interest in models containing many hyper parameters, such as deep neural networks. In this paper, we introduce the most widely used HPO methods, such as grid search, random search, and Bayesian optimization, and investigate their characteristics through experiments. The MNIST data set is used to compare results in experiments to find the best method that can be used to achieve higher accuracy in a relatively short time simulation. The learning rate and weight decay have been chosen for this experiment because these are the commonly used parameters in this kind of experiment.

Optimization of Ground Contact Model of Ankleless Lower Exoskeleton Robot for Gait Simulation (보행 모의 실험을 위한 발목 없는 하지 외골격 로봇의 지면 접촉 모델 최적화)

  • Gimyeong Choi;Sanghyung Kim;Changhyun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.481-486
    • /
    • 2023
  • The purpose of this study is to optimize parameters of a contact model to obtain similar ground contact force of human walking. Dynamic walking simulation considering ground contact is performed to determine load specifications when developing walking assist robots. Large contact forces that are not observed in actual experimental data occur during the simulation at the initial contact (e.g., heel contact). The large contact force generates unrealistic large joint torques. A lower exoskeleton robot with no ankles is developed with the Matlab simscape and the nonlinear hyper volumetric contact model is applied. Parameters of the nonlinear hyper volumetric model were optimized using actual walking contact force data. As a result of optimization, it was possible to obtain a contact force pattern similar to actual walking by removing the large contact force generated during initial contact.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

Mixed-effects LS-SVR for longitudinal dat

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.363-369
    • /
    • 2010
  • In this paper we propose a mixed-effects least squares support vector regression (LS-SVR) for longitudinal data. We add a random-effect term in the optimization function of LS-SVR to take random effects into LS-SVR for analyzing longitudinal data. We also present the model selection method that employs generalized cross validation function for choosing the hyper-parameters which affect the performance of the mixed-effects LS-SVR. A simulated example is provided to indicate the usefulness of mixed-effect method for analyzing longitudinal data.

Particle Swarm Optimization in Gated Recurrent Unit Neural Network for Efficient Workload and Resource Management (효율적인 워크로드 및 리소스 관리를 위한 게이트 순환 신경망 입자군집 최적화)

  • Ullah, Farman;Jadhav, Shivani;Yoon, Su-Kyung;Nah, Jeong Eun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.45-49
    • /
    • 2022
  • The fourth industrial revolution, internet of things, and the expansion of online web services have increased an exponential growth and deployment in the number of cloud data centers (CDC). The cloud is emerging as new paradigm for delivering the Internet-based computing services. Due to the dynamic and non-linear workload and availability of the resources is a critical problem for efficient workload and resource management. In this paper, we propose the particle swarm optimization (PSO) based gated recurrent unit (GRU) neural network for efficient prediction the future value of the CPU and memory usage in the cloud data centers. We investigate the hyper-parameters of the GRU for better model to effectively predict the cloud resources. We use the Google Cluster traces to evaluate the aforementioned PSO-GRU prediction. The experimental shows the effectiveness of the proposed algorithm.

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

Sparse kernel classication using IRWLS procedure

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.749-755
    • /
    • 2009
  • Support vector classification (SVC) provides more complete description of the lin-ear and nonlinear relationships between input vectors and classifiers. In this paper. we propose the sparse kernel classifier to solve the optimization problem of classification with a modified hinge loss function and absolute loss function, which provides the efficient computation and the sparsity. We also introduce the generalized cross validation function to select the hyper-parameters which affects the classification performance of the proposed method. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF