• Title/Summary/Keyword: hyper elliptic gaussian

Search Result 2, Processing Time 0.014 seconds

Fuzzy neural network modeling using hyper elliptic gaussian membership functions (초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF

Hybrid Self-Tuning Method for the Fuzzy Inference System Using Hyper Elliptic Gaussian Membership Function (초타원 가우시안 소속함수를 사용한 퍼지 추론 시스템의 하이브리드 자기 동조 기법)

  • Kwon, Ok-Kook;Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.379-382
    • /
    • 1997
  • We present a hybrid self-tuning method using hyper elliptic Gaussian membership function. The proposed method applies a GA to identify the structure and the parameters of a fuzzy inference system. The parameters obtained by a GA, however, are near optimal solutions. So we solve this problem through a backpropagation-type gradient method. It is called GA hybrid self-tuning method in this paper. We provide a numerical example to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF