• Title/Summary/Keyword: hygroscopic performance

Search Result 10, Processing Time 0.027 seconds

Mechanical and Hygroscopic Behaviour of Teak Wood Sawdust Filled Recycled Polypropylene Composites

  • Yadav, Anil Kumar;Srivastava, Rajeev
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.202-208
    • /
    • 2018
  • In this paper, mechanical and hygroscopic properties of teak sawdust and recycled polypropylene (RPP) composites are evaluated and compared with virgin polypropylene (VPP) matrix based composites. Verities of composites are prepared by variation in the plastic types, wood plastic ratio and the addition of coupling agent in the formulations. Mixing of wood sawdust and polypropylene is done by a twin screw extruder, and then sheets of wood plastic composites (WPCs) are produced by using the compression molding method. The results show that recycled matrix composites exhibit better tensile, flexural strength with low impact strength than virgin matrix based composites. Recycled composites show low water absorption and thickness of swelling than virgin matrix based composites. The results confirm that wood content in the polymer matrix affects the performance of composites while presence maleated polypropylene (MAPP) improves the properties of the composites significantly. Developed RPP matrix composites are as useful as VPP matrix composites and have the potential to replace the wood and plastics products without any adverse effect of the plastics on the environment.

Analysis of Factors Affecting the Hygroscopic Performance of Thermally Treated Pinus koraiensis Wood (잣나무열처리재의 흡방습성능에 미치는 영향인자 분석)

  • Chang, Yoon-Seong;Han, Yeon-Jung;Eom, Chang-Deuk;Park, Joo-Saeng;Park, Moon-Jae;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • A high airtightness is required for the residential spaces constructed recently to save cooling and heating energy through improving insulation performance. Because the chances to release steam formed by human activity in building and inflow of water vapor in outdoor air to residential space are reduced, the natural humidity control performance of interior materials has become more important. In this study, hygroscopic performance of thermo-physically treated wood (Pinus koraiensis) was estimated. At various relative humidity condition, the water vapor adsorption and desorption rates of wooden materials were measured as well as equilibrium moisture content. Effects of roughness and surface microstructure as physical factors and functional groups as chemical factors on the hygroscopicity were analyzed. It is expected that the results from this study and further study of measuring moisture generation in residential spaces could contribute to install a system for evaluating the hygrothermal performance of wooden building.

Synthesis of CM-Chitin from Crab Shells (게껍질로부터 CM-Chitin의 합성)

  • Ahn, C.I.;Kim, S.H.;Yoo, Y.J.;Park, C.H.;Lim, H.S.;Park, C.K.;Park, E.K.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.41-47
    • /
    • 1993
  • Chitin was isolated from crab shells by modified Hackman's method, which was treated again with aqueous sodium hydroxide solution to give alkali chitin(sodium alkoxide of chitin). And after, the alkali chitin is allowed to react with monochloroacetic acid to synthesize 6-O-(carboxymethyl) chitin [CM-Chitin] under diminished pressure. In order to synthesize high performance CM-Chitin as hygroscopic agent, it was measured that the yield and degree of subsititution of each CM-Chitin according to molar ratio(monochloroacetic acid equivalent mol/N-acetyl-D-glucosamine residue) and their moisture-absorption and moisture-release properties were measured and compared with those of hyaluronic acid. The moisture-absorption and moisture-release properties of CM-Chitin, especially 0.8 in degree of substitution, were found quite similar to those of hyaluronic acid. The preliminary results show that CM-Chitin might be used as hygroscopic agent instead of hyaluronic acid in field of cosmetics.

Recent Advances in Conductive Adhesives for Electronic Packaging Technology (전도성 접착제를 이용한 패키징 기술)

  • Kim, Jong-Woong;Lee, Young-Chul;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Conductive adhesives have recently received a lot of focus and attention from the researchers in electronics industry as a potential substitute to lead-containing solders. Numerous studies have shown that the conductive adhesives have many advantages over conventional soldering such as environmental friendliness, finer pitch feasibility and lower temperature processing. This review focuses on the recent research trends on the reliability and property evaluation of anisotropic and non-conductive films that interconnect the integrated circuit component to the printed circuit board or other types of substrate. Major topics covered are the conduction mechanism in adhesive interconnects; mechanical reliability; thermo-mechanical-hygroscopic reliability and electrical performance of the adhesive joints. This review article is aimed at providing a better understanding of adhesive interconnects, their principles, performance and feasible applications.

  • PDF

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열 이용 외기부하 저감시스템의 냉각 및 가열효과 예측 간이추정법에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.169-181
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

  • PDF

A Study on the Film Performance by Physical Properties of Gelatin(Glue) in Dancheong (젤라틴(아교)의 물성에 따른 단청 도막의 성능비교 연구)

  • Park, Ji Hye;Jeong, Seon Hye;Kim, Ik Joo;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.25-33
    • /
    • 2013
  • This study aims to investigate the film performance by physical properties of glue and gelatin in traditional paint(Dancheong). To do this, homemade, commercial glue and gelatin was selected and evaluated water reaction and weatherproof. The result, the highest gel strength, gelatin was better than acrylic acid ester resin, when compared with hygroscopic property and adhesive property. And that was better than in any others, when compared with water-proofing.

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열을 이용한 외기부하저감시스템의 냉각 및 가열효과 예측을 위한 간이추정법에 관한 연구)

  • Son, Won-Tug;Park, Kyung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.628-634
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

Hygroscopic Properties of Light-Frame Wall with Different Assemblies

  • Kim, Se-Jong;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2006
  • On purpose to reduce accumulated moisture and to prevent moisture condensation in a light-frame wall, thermal characteristics and moisture behaviors were investigated for four different wall assemblies; a) typical wall, b) addition of vapor retarder between the insulation and the gypsum board, c) addition of air gap for natural ventilation behind the siding, d) composition with b) and c). Each wall was tested under two climate conditions; 1) $20^{\circ}C$, 50% RH (indoor) and $30^{\circ}C$, 85% RH (outdoor), 2) $30^{\circ}C$, 85% RH (indoor) and $20^{\circ}C$, 50% RH (outdoor).The results showed that the typical wall assembly had poor resistance against moisture intrusion from the inside of building. Outdoor and indoor humidity caused the moisture condensations on the inside of the siding and the back surface of the sheathing respectively. The addition of a vapor retarder did not give significant improvement in preventing the moisture intrusion.

Study on spaceborne telescope structure with high stability using new composite materials (신소재 복합재료를 이용한 우주용 카메라 구조의 고안정화 설계에 관한 연구)

  • EUNG-SHIK LEE;SUN-HEE WOO
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.132-136
    • /
    • 2003
  • A Multi-Spectral Camera (MSC) is the payload of KOMPSAT-2 which is designed for earth imaging in visible and near-Infrared region on a sun-synchronous orbit. The telescope in the MSC is a Ritchey-Chretien type with large aperture. The telescope structure should be well stabilized and the optical alignment should be kept steady so that best images can be achieved. However, the MSC is exposed to adverse thermal environment on the orbit which can give impacts on optical performance. Metering structure which is exposed to adverse space environment should have tight requirement of low thermal expansion and hygroscopic stability. In order to meet those stability requirements in addition to fundamental structural ones telescope structure was designed with newly developed graphite-cyanate composite which has high tensile modulus, high thermal conductivity and low moisture absorption compared with conventional graphite-epoxy composite. In this paper, space-borne telescope structure with new composite material will be presented and fulfillment of stability requirements will be verified with designed structure.

  • PDF

Physical Properties of Linerboard and Corrugated Fiberboard at the Cyclic Condition of Low Humidity (저습도 사이클 조건에서의 라이너지와 골판지의 물성)

  • Youn, Hye-Jung;Lee, Hak-Lae;Chin, Seong-Min;Choi, Ik-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.2 s.120
    • /
    • pp.38-44
    • /
    • 2007
  • The hygroscopic property of paper is important for convertability and end use performance. When the board and corrugated fiberboard are exposed to low relative humidity, a trouble of score (or crease) cracking could occur. In this study, we evaluated the moisture content and mechanical properties of linerboard and corrugated board at the cyclic condition of low humidity to prevent a score crack trouble. As the relative humidity decreased from 50% to 38% and 25%, the moisture content of linerboard decreased about 7% to 6% and 4%. At low humidity, most of mechanical properties were improved except for strain. The linerboard exposed at 25% RH showed a remarkable reduction of strain by 11%. At the same relative humidity, linerboard and corrugated fiberboard showed the different property values depending on moisture hysteresis.