• Title/Summary/Keyword: hygromycin resistance

Search Result 37, Processing Time 0.022 seconds

Development of Marker-free Transgenic Rice for Increasing Bread-making Quality using Wheat High Molecular Weight Glutenin Subunits (HMW-GS) Gene (밀 고분자 글루테닌 유전자를 이용하여 빵 가공적성 증진을 위한 마커 프리 형질전환 벼의 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1317-1324
    • /
    • 2013
  • High-molecular weight glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the wheat grain. We have produced marker-free transgenic rice plants containing a wheat Glu-1Bx7 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using the Agrobacterium-mediated co-transformation method. The Glu-1Bx7-own promoter was inserted into a binary vector for seed-specific expression of the Glu-1Bx7 gene. Two expression cassettes comprised of separate DNA fragments containing only Glu-1Bx7 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately to the Agrobacterium tumefaciens EHA105 strain for co-infection. Each EHA105 strain harboring Glu-1Bx7 or HPTII was infected to rice calli at a 3:1 ratio of Glu-1Bx7 and HPTII, respectively. Then, among 216 hygromycin-resistant $T_0$ plants, we obtained 24 transgenic lines with both Glu-1Bx7 and HPTII genes inserted into the rice genome. We reconfirmed integration of the Glu-1Bx7 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the wheat Glu-1Bx7 were stably expressed in the rice $T_1$ seeds. Finally, the marker-free plants harboring only the Glu-1Bx7 gene were successfully screened at the $T_1$ generation.

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung;Park, Sook-Young;Kim, Hyejeong;Kim, Dongyoung;Lee, Seon-Woo;Kim, Heung Tae;Lee, Jong-Hwan;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

Protoplast-Mediated Transformation of the Filamentous Fungus Cladosporium phlei: Evidence of Tandem Repeats of the Integrative Transforming Vector

  • Kim, Jung-Ae;Kim, Jung-Mi;Kim, Hwan-Gyu;Kim, Beom-Tae;Hwang, Ki-Jun;Park, Seung-Moon;Yang, Moon-Sik;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • To facilitate the genetic manipulation of Cladosporium phlei, a causal agent of leaf spot disease in timothy (Phleum pretense), protoplast-mediated transformation of C. phlei has been developed and the resulting transformants were characterized in this study. Hygromycin B resistance was applied as a dominant selection marker due to the sensitivity of C. phlei to this antibiotic. The transformation efficiency ranged from approximately 20-100 transformants per experiment. Southern blot analysis of stable transformants revealed that transformation occurred by way of stable integration of the vector DNA into the fungal chromosome. PCR analysis and plasmid rescuing of randomly selected transformants suggested that integration of tandem repeat copies of vector DNA was common. In addition, multiple integrations of the transforming vector at different chromosomal sites were also observed. The establishment of a transformation method for C. phlei facilitates strain improvement of this fungus and can be applied as an initial step in the molecular analysis of pigment production in this fungus.

Antisense GA 3β-Hydroxylase Gene Transferred to Rice Plants. (Antisense gibberellin 3β-hydroxylase발현 형질전환벼)

  • 강용원;윤용휘;김길웅;이인중;신동현
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.644-649
    • /
    • 2004
  • During plant development, active gibberellins (GAs) control many aspects of plant growth and development including seed germination, stem elongation, flower induction, anther development and seed growth. To understand the biosynthesis and functional role of active GAs in high plants, this study investigated GA 3$\beta$-hydroxylase gene en-coding $GA_1$ and$GA_4$ catalizing last step in GA biosynthetic pathway. The antisense GA 3$\beta$-hydroxylase gene was inserted into expression vector, pIG121-Hm. Calli derived from mature seeds of rice (Oryza satiiva L. cv. Donjinbyeo) were co-cultivated with Agrohacterium tumefaciens EHA101 earring a pIG121-Hm containing hygromycin resistance ($Hyg^r$) and antisense GA 3$\beta$-hydroxylase gene. Seventeen transgenic plants obtained inhibiting GA 3$\beta$-hydroxylase. Transgenic plants had shorter plant height more than that of the Dongjinbyeo. Stable integration of antisense GA 3$\beta$-hydroxylase gene was confirmed by polymerase chain reaction of genomic DNA isolated from the leaf organs of the $T_o$ generation.

Overproduction of Sodium Gluconate Using the Recombinant Aspergillus niger (재조합 Aspergillus niger에 의한 글루콘산나트륨의 산업적 생산)

  • 이선희;이현철;김대혁;양문식;정봉우
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.214-219
    • /
    • 1998
  • Polymerase chain reaction(PCR) was conducted to obtain the gene encoding glucose oxidase(GOD) from Aspergillus niger(ATCC 2110) and the DNA sequence determined was coincided with published GOD sequence from A. niger. Recombinant transforming vector containing GOD and hygromycin B(hyg.B) resistant gene(hph) was constructed and used for further transformation of A. niger ATCC 2110. Selectivity of hyg.B against A. niger differed depending on which media were used i.e., nutrient-rich media such as potato dextrose agar(PDA) and complete medium(CM) showed only 50% growth inhibition at 400 $\mu$m ml$^-1$ of hyg.B while the minimal media inhibited mycelial growth completely at 200 $\mu$m ml$^-1$ of hyg.B. Twenty to sixty putative transformants were isolated from the hyg.B-containing minimal top agar, transferred successively onto alternating selective and nonselective media for a mitotic stability of hyg.B resistance and, then, single-spored. Among the stable transformants, the transformant(GOD1-6) grown by flask culture showed the considerable increase of extracellular GOD activity, which was estimated to the degree of 50% - 100% comparing to that of wild type. Transformation of tGOD1-6 was resulted from integration of the vectors into heterologous as well as homologous regions of the A. niger genome. Southern blot analysis revealed that there were two independent integrations of vector into fungal genome and one into the GOD gene due to homologous recombination. In addition, GOD activity and sodium gluconate production when tGOD1-6 was fed-batch fermented were enhanced 11 fold and 2.25 fold, respectively, compared to that of the wild type.

  • PDF

Systematic approaches to identify functional genes using the FOX-hunting system in Chinese cabbage (FOX hunting system을 이용한 배추 기능유전자 탐색)

  • Lee, In-Hoo;Jung, Yu-Jin;Park, Jong-In;Nou, Ill-Sup;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.174-185
    • /
    • 2010
  • Full-length cDNAs are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. To elucidate the functions of a large population of Chinese cabbage (Brassica rapa) genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the full-length cDNA Over-eXpresser (FOX) gene hunting system. With oligo dT column it purify the each mRNA from the flower organs, leaf and stem tissue. And about 120,000 cDNAs from the library were transformed into $\lambda$-pFLCIII-F vector. Of which 115,000 cDNAs from the library were transformed into T-DNA binary vector, pBigs for transformation study. We used normalized full-length cDNA and introduced each cDNA into Arabidopsis by in planta transformation. Full-length Chinese cabbage cDNAs were expressed independently under the CaMV 35S promoter in Arabidopsis. Selfed seeds were harvested from transgenic Arabidopsis. We had selected 2,500 transgenic plants by hygromycin antibiotic tolerant test, and obtained a number of transgenic mutants. Each transgenic Arabidopsis was investigated in morphological changes, fertility and leaf colour. As a result, 285 possible morphological mutants were identified. Introduced cDNA was isolated by PCR amplification of the genomic DNA from the transgenic mutants. Sequencing result and BLAST analysis showed that most of the introduced cDNA were complete cDNAs and functional genes. Also, we examined the effect of Bromelain on enhancing resistance to soft rot in transgenic Chinese cabbage 'Osome'. The bromelain gene identified from FOX hunting system was transformed into Chinese cabbage using Agrobacterium methods. Transformants were screened by PCR, then RT-PCR and real time PCR were performed to analyze gene expression of cysteine protease in the T1 and T2 generations. The anti-bacterial activity of bromelain was tested in Chinese cabbages infected with soft rot bacteria. The results showed that the over-expressed bromelain gene from pineapple conferred enhanced resistance to soft rot in Chinese cabbage.

Expression of Sodium/iodide Symporter Transgene in Neural Stem Cells (신경줄기세포(HB1.F3)에서 나트륨옥소 공동수송체 도입유전자 발현)

  • Kim, Yun-Hui;Lee, Dong-Soo;Kang, Joo-Hyun;Lee, Yong-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2004
  • Purpose: The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. Materials and Methods: F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (Internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. Results: The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to $20{\mu}M$, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. Conclusion: These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene ex[ressopm of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions.