• Title/Summary/Keyword: hygrometry

Search Result 7, Processing Time 0.022 seconds

The Optimization of Hydrogen Reduction Process for Mass Production of Fe-8wt%Ni Nanoalloy Powder

  • Jung, Sung-Soo;Kang, Yun-Sung;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1331-1332
    • /
    • 2006
  • The present investigation has attemped to optimize hydrogen reduction process for the mass production of Fe-8wt%Ni nanoalloy powder from ball milled $Fe_2O_3-NiO$ powder. In-situ hygrometry study was performed to monitor the reduction behavior in real time through measurement of water vapor outflowing rate. It was found that the reduction process can be optimized by taking into account the apparent influence of water vapor trap in the reactor on reduction kinetics which strongly depends on gas flow rate, reactor volume and reduction.

  • PDF

The Hydrogen Reduction Behavior of Ultrasonic Ball-milled WO3-CuO Nanopowder (초음파 밀링한 WO3-CuO 나노혼합분말의 수소환원 거동)

  • Jung, Sung-Soo;Yoon, Eui-Sik;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.597-603
    • /
    • 2009
  • The hydrogen reduction behavior of ultrasonic ball-milled $WO_3-CuO$ nanopowder, which is highly related with micro-pore structure, was investigated by thermogravimetry(TG) and hygrometry system. EDS and TEM results represented that the ultrasonic ball-milled $WO_3-CuO$ nanopowder consisted of the agglomerates which was confirmed as a homogeneous mixture of $WO_3$ and CuO particles. It was found that the reduction reaction of CuO was retarded by initial micro-pores which are smaller than 40 nm in the ultrasonic ball-milled $WO_3-CuO$ nanopowder. The earlier agglomeration of Cu particles at comparably low temperature decreased the volume of micro-pores in the $WO_3-CuO$ nanopowder which caused the retardation of $WO_3$ reduction reaction. These results clearly explain that the micro-pore structure significantly affected the reduction reaction of $WO_3$ and CuO in the $WO_3-CuO$ nanopowder.

The Effect of Composition on Hydrogen Reduction Behavior of Ball-milled WO3-CuO Nanocomposite Powders (볼밀링한 WO3-CuO 나노복합분말의 조성에 따른 수소환원 거동)

  • Jung Sung-Soo;Kang Yun-Sung;Lee Jai-Sung
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.205-210
    • /
    • 2006
  • The effect of Cu content on hydrogen reduction behavior of ball-milled $WO_3$-CuO nanocomposite powders was investigated. Hydrogen reduction behavior and reduction percent(${\alpha}$) of nanopowders were characterized by thermogravimetry (TG) and hygrometry measurements. Activation energy for hydrogen reduction of $WO_3$ nanopowders with different Cu content was calculated at each heating rate and reduction percent(${\alpha}$). The activation energy for reduction of $WO_3$ obtained in this study existed in the ranging from 129 to 139 kJ/mol, which was in accordance with the activation energy for $WO_3$ powder reduction of conventional micron-sized.

Hydrogen Reduction Behavior of Al2O3/CuO Powder Mixtures Prepared from Different Raw Powders and Their Microstructural Characteristics (원료분말에 따른 Al2O3/CuO 분말혼합체의 수소환원 거동 및 미세조직 특성)

  • Oh Sung-Tag;Kim Jung-Nam;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.696-700
    • /
    • 2004
  • The reduction behavior of $Al_{2}O_3/CuO$ powder mixtures, prepared from $Al_{2}O_3/CuO$ or $Al_{2}O_3/Cu-nitrate$, was investigated by using thermogravimetry and hygrometry. The powder characteristics were examined by BET, XRD and TEM. Also, the influence of powder characteristics on the microstructure and properties of hot-pressed composites was analyzed. The formation mechanism of nano-sized Cu dispersions was explained based on the powder characteristics and reduction kinetics of oxide powders. In addition, the dependence of the microstructure and mechanical properties of hot-pressed composites on powder characteristics is discussed in terms of the initial size and distribution of Cu particles. The practical implication of these results is that an optimum processing condition for the design of homogeneous microstructure and required properties can be established.

Influence of the Water Vapor Content on the Hydrogen Reduction Process of Nanocrystalline NiO

  • Jung, Sung-Soo;An, Hyo-Sang;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.315-319
    • /
    • 2010
  • In this study, the hydrogen reduction behavior of ball-milled NiO nanopowder was investigated depending on the partial pressure of water vapor. The hydrogen reduction behavior was analyzed by thermogravimetry and hygrometry under heating to 873 K in hydrogen. In order to change the partial pressure of the water vapor, the dew point of hydrogen was controlled in the range of 248 K~293 K by passing high-purity hydrogen through a saturator that contained water. Interestingly, with the increase in the dew point of the hydrogen atmosphere, the first step of the hydrogen reduction process decreased and the second step gradually increased. After the first step, a pore volume analysis revealed that the pore size distribution in the condition with a higher water vapor pressure shifted to a larger size, whereas the opposite appearedat a lower pressure. Thus, it was found that the decrease in the pore volume during the chemical reaction controlled process at a dew point of 248 K caused a reduction in retardation in the diffusion controlled process.

Prediction of Water Activity for Gelatinized Model Foods (모형식품의 수분활성도 예측)

  • Jung, Seung-Hyeon;Chang, Kyu-Seob;Park, Young-Deok
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.94-97
    • /
    • 1993
  • This study was to predict water activity of gelatinized model foods containing moisture, protein and starch with different concentration of humectants such as sodium chlorife and sucrose. The water activity of each samples were determinded by electrical hygrometry. The degree of lowering water activity in model foods with humectant solutions was following order as NaCl>sucrose. Model food $P_2S_1$ was predominant in depression of water activity by humectants than other model foods. The multiple regression equations between water activity and different humectants concentration, compositions and solution ratio of model foods were obtained and $R^2$ values were higher than 0.91.

  • PDF

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF