• 제목/요약/키워드: hydroxyl group

검색결과 604건 처리시간 0.021초

Introduction of vinyl Compounds Containing Hydroxyl Group into Polyamide Reverse Osmosis Membrane

  • 염민오;김학상;김성수;김재진
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 추계 총회 및 학술발표회
    • /
    • pp.54-55
    • /
    • 1995
  • 현재 수처리용 분리막으로 널리 사용되고 있는 상업용 polyamide membrane은 주사슬을 이루고 있는 amide bond가 chlorine에 쉽게 분해됨으로써 주쇄의 절단이 일어나므로 막이 파괴되는 결과를 초래하여 역삼투 분리막의 기능이 저하되는 문제점을 갖고 있다. 또한 분리막의 성능으로써 수투과도의 향상도 기존의 분리막의 개선점으로 지적되고 있다. 본 연구에서는 재료 자체의 친수성이 강한 hydroxyl group을 가진 vinyl계 화합물을 기존의 amine계 monomer와 혼합하여 가교반응을 시킴으로써 전체적인 분리막의 수투과도 및 내염소성의 향상을 도모하였다. 기존의 polyamide 분리막의 소재인 1,3-phenylenediamine(MPDA)에 친수성기인 hydroxyethylmethacrylate(HEMA) monomer를 첨가하고 가교제인 trymesoyl chloride(TMC)로 이를 가교시켜 HEMA 및 PVA의 친수성에 의한 수투과도 및 내염소성의 향상을 유도하여 보았다.

  • PDF

ZnO ALE를 위한 Si, sapphire기판의 ECR 플라즈마 전처리 (ECR Plasma Pretreatment on Sapphire and Silicon Substrates for ZnO ALE)

  • 임종민;신경철;이종무
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.363-367
    • /
    • 2004
  • Recently ZnO epitaxial layers have been widely studied as a semiconductor material for optoelectronic devices. Sapphire and silicon are commonly selected as substrate materials for ZnO epitaxial growth. In this communication, we report the effect of the ECR plasma pretreatment of sapphire and silicon substrates on the nucleation in the ZnO ALE (atomic layer epitaxy). It was found that ECR plasma pretreatment reduces the incubation period of the ZnO nucleation. Oxygen ECR plasma enhances ZnO nucleation most effectively since it increases the hydroxyl group density at the substrate surface. The nucleation enhancing effect of the oxygen ECR plasma treatment is stronger on the sapphire substrate than on the silicon substrate since the saturation density of the hydroxyl group is lower at the sapphire surface than that at the silicon surface.

교류형 플라즈마 디스플레이용 MgO 박막의 조성변화에 따른 방전전압특성의 영향 (Stoichiometry dependency of the firing and sustain voltage properties of MgO thin films for AC plasma display panels)

  • 손충용;조진희;김락환;김정열;박종완
    • 한국진공학회지
    • /
    • 제9권1호
    • /
    • pp.24-29
    • /
    • 2000
  • MgO thin films were deposited on soda lime glass substrates by rf magnetron sputtering using a MgO target at various oxygen flow ratios in order to probe the relationship between MgO film properties and discharge characteristics. MgO films have a tendency to form microstructures with a preferred growth orientation of (200) with increasing oxygen flo ration up to 0.1 $O_2$/(Ar+$O_2$). MgO film obtained at 0.1[$O_2$/(Ar+$O_2$)] was found to be fully stoichiometric. The stoichiometric MgO film was observed to have relatively very clean surface and grains of large size and contain almost no hydroxyl group. The AC PDP with fully stoichiometric MgO film showed lower firing and sustain voltages than those with magnesium-rich or oxygen-rich MgO films, being largely attributed to the larger grain size and the minimized hydroxyl group.

  • PDF

A Multisegmented Polystyrene with pH-Cleavable Linkages

  • Kang, Tae-Hyeon;Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2694-2698
    • /
    • 2014
  • A multisegmented polystyrene (PS) with pH-cleavable ester and carbamate linkages was successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). ATRP was employed to synthesize polystyrene from hydroxyl-terminated initiator using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) as the catalyst. The reaction of the resulting PS with sodium azide yielded the azido-terminated polymer. The hydroxyl group in the other end of the polymer was reacted with 4-nitrophenyl chloroformate (NPC), followed by reaction with propargylamine to produce an alkyne end group with a carbamate linkage. The PS with an alkyne group in one end and an azide group in the other end was then self-coupled in the presence of CuBr/2,2'-bipyridyl (bpy) in DMF to yield a desired multisegmented PS. Molecular weight and molecular weight distribution of the self-coupled polymer increased with time, as in the typical step-growth-type polymerization processes. Finally, we demonstrated that the ester and carbamate linkages of the multisegmented PS were hydrolyzed in the presence of HCl to yield individual PS chains.

Tertiary Structure of Ganglioside $G_{A1}$ as Determined by NMR Spectroscopy

  • 이경익;이상원;전길자;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권5호
    • /
    • pp.569-575
    • /
    • 1998
  • Investigation of the structure of the gangliosides has proven to be very important in the understanding of their biological roles. We have determined the tertiary structure of asialoganglioside GM1 $(GA_1)$ using NMR spectroscopy and distance geometry calculations. All of the structures are very similar except the glycosidic torsion angles in the ring IV and ring III linkages. There are two low-energy structures for GA1, G1 and G2. G1 differs from G2 only in the IV-III glycosidic linkages and the orientation of acetamido group in ring III. There is a stable intramolecular hydrogen bond between the third hydroxyl group in ring I and the ring oxygen atom in ring II. Also, there may be a weak hydrogen bond between the second hydroxyl group in ring IV and the acetamido group in ring III. Small coupling constants of $^3J_{IH3,IOH3}\; and\; ^3J_{IVH2,IVOH2}$ support this result. Overall structural features of $(GA_1)$ are very similar to those of $(GM_1)$. It implicates that specificities of the sugar moieties in GM1 are caused not by their tertiary foldings, but mainly by the electrostatic interactions between the polar sialic acid and its receptors. Since it is evident that $(GA_1)$ is more hydrophobic than $(GA_1)$, a receptor with a hydrophobic binding site can recognize the $(GA_1)$ better than $(GA_1)$. Studies on the conformational properties of $(GA_1)$ may lead to a better understanding of the molecular basis of its functions.

Immobilization of Prussian blue nanoparticles in acrylic acid-surface functionalized poly(vinyl alcohol) sponges for cesium adsorption

  • Wi, Hyobin;Kang, Sung-Won;Hwang, Yuhoon
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.173-179
    • /
    • 2019
  • Prussian blue (PB) is known to be an effective material for radioactive cesium adsorption, but its nano-range size make it difficult to be applied for contaminated water remediation. In this study, a simple and versatile approach to immobilize PB in the supporting matrix via surface functionalization was investigated. The commercially available poly vinyl alcohol (PVA) sponge was functionalized by acrylic acid (AA) to change its major functional group from hydroxyl to carboxylic, which provides a stronger ionic bond with PB. The amount of AA added was optimized by evaluating the weight change rate and iron(III) ion adsorption test. The FTIR results revealed the surface functional group changing to a carboxyl group. The surface functionalization enhanced the attachment of PB, which minimized the leaching out of PB. The $Cs^+$ adsorption capacity significantly increased due to surface functionalization from 1.762 to 5.675 mg/g. These findings showed the excellent potential of the PB-PAA-PVA sponge as a cesium adsorbent as well as a versatile approach for various supporting materials containing the hydroxyl functional group.

효소처리 가공이 당근(Daucus carota var. sativa)의 항산화 활성 변화에 미치는 영향 (Change of Antioxidant Activities in Carrots (Daucus carota var. sativa) with Enzyme Treatment)

  • 유진균;이진희;조형용;김정국
    • 한국식품영양과학회지
    • /
    • 제42권2호
    • /
    • pp.262-267
    • /
    • 2013
  • 본 연구는 당근(Daucus carota var. sativa) 가공방법 중 현재 주로 사용되고 있는 기계적 마쇄 공정으로 인하여 파괴되는 영양소의 손실을 최소화하기 위하여 식물 세포벽에 존재하는 불용성 물질인 protopectin을 가수분해하여 수용성 물질인 pectin으로 전환시키는 효소인 protopectinase를 이용하여 세포의 막을 보존하고 세포 안에 존재하는 영양소의 손실의 차이를 알아보고자 하였다. 당근의 회수율을 측정한 결과 효소처리군과 마쇄 공정 처리군을 비교하였을 때 효소처리군의 회수율은 81%, 잔사율은 19%을 보인 반면, 마쇄처리군은 회수율 56%, 잔사율 44%를 보여 약 20% 정도의 회수율 차이를 보였다. 이는 가공 후 수율 및 폐기량에서 많은 차이를 보일 것으로 판단된다. 당근의 효소 처리군과 마쇄 처리군의 성분 변화를 비교하기 위하여 당근의 주요성분인 ${\beta}$-carotene의 함량 변화를 측정한 결과 protection factor(PF) 각각 $2.2{\pm}0.2$ PF, $1.4{\pm}0.4$ PF의 차이를 보였으며, 총 폴리페놀 함량은 $89{\pm}3.42{\mu}g/g$, $64{\pm}4.16{\mu}g/g$, 총 플라보노이드 함량은 각각 $68{\pm}2.73\mu}g/g$, $41{\pm}3.26{\mu}g/g$을 보임으로써 세포막의 보존으로 인한 영양소의 파괴가 기계적 마쇄 처리군에 비하여 덜 발생한 것을 확인할 수 있었다. 두 처리군의 항산화력을 측정하기 위하여 DPPH radical 소거능과 hydroxyl radical 소거능, 아질산염 소거능을 측정하였으며 DPPH radical 소거능은 1,000 ppm에서 $87{\pm}0.29%$, $74{\pm}1.56%$로 약 13%의 DPPH radical 소거능을 보였고, hydroxyl radical 소거능 결과 10,000 ppm에서 $44{\pm}0.49%$$32{\pm}0.48%$로 약 12%의 hydroxyl radical 소거능을 보였다. 아질산염 소거능 측정 결과 1,000 ppm에서 $59{\pm}0.53%$$46{\pm}0.62%$로 약 13% 높은 아질산염 소거능을 보였다. 이는 protopectinase 효소 처리로 인한 세포막의 보존이 가공 중 발생되는 영양소의 손실을 줄임과 동시에 당근이 가지고 있는 항산화 물질들을 보존하고 있음을 확인할 수 있었다.

Bonding Performance of Maltodextrin and Citric Acid for Particleboard Made From Nipa Fronds

  • Santoso, Mahdi;Widyorini, Ragil;Prayitno, Tibertius Agus;Sulistyo, Joko
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권4호
    • /
    • pp.432-443
    • /
    • 2017
  • Maltodextrin and citric acid are two types of natural materials with the potential as an eco-friendly binder. Maltodextrin is a natural substance rich in hydroxyl groups and can form hydrogen bonds with lignoselulosic material, while citric acid is a polycarboxylic acid which can form an ester bond with a hydroxyl group at lignoselulosic material. The combination of maltodextrin and citric acid as a natural binder materials supposed to be increase the ester bonds formed within the particleboard. This research determined to investigate the bonding properties of a new adhesive composed of maltodextrin/citric acid for nipa frond particleboard. Maltodextrin and citric acid were dissolved in distillated water at the ratios of 100/0, 87.5/12.5, 75/25 and 0/100, and the concentration of the solution was adjusted to 50% for maltodextrin and 60% citric acid (wt%). This adhesive solution was sprayed onto the particles at 20% resin content based on the weight of oven dried particles. Particleboards with a size of $25{\times}25{\times}1cm$, a target density $800kg/m^3$ were prepared by hot-pressing at press temperatures of $180^{\circ}C$ or $200^{\circ}C$, a press time of 10 minute and board pressure 3.6 MPa. Physical and mechanical properties of particleboard were tested by a standard method (JIS A 5908). The results showed that added citric acid level in maltodextrin/citric acid composition and hot-pressing temperature had affected to the properties of particleboard. The optimum properties of the board were achieved at a pressing temperature of $180^{\circ}C$ and the addition of only 20% citric acid. The results also indicated that the peak intensity of C=O group increased and OH group decreased with the addition of citric acid and an increase in the pressing temperature, suggesting an interreaction between the hydroxyl groups from the lignocellulosic materials and carboxyl groups from citric acid to form the ester groups.