• Title/Summary/Keyword: hydrothermal systems

Search Result 152, Processing Time 0.053 seconds

Application of analytic hierarchy process technique for selecting a hydrothermal energy site (수열에너지 입지 선정을 위한 계층화분석법의 적용)

  • Joohyun Ahn;Suwan Park;Changhyun Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.69-81
    • /
    • 2024
  • In this study, an evaluation system that can be used to evaluate the feasibility of developing and supplying hydrothermal energy for the operation of large-scale complex facilities was developed. To this end, this study derived factors to be considered when selecting a location for the use of hydrothermal energy using raw water from multi-purpose dams and regional water supply systems through literature survey and expert interviews. The evaluation indicators derived from this study are divided into four sectors: hydrothermal energy utilization factors, location factors, planning factors, and disaster safety factors, and are composed of 10 mid-level indicators and 34 detailed planning indicators. The relative importance of all factors was derived using the Analytic Hierarchy Process (AHP) technique, and the developed evaluation indicators and relative importance were applied to four multi-purpose dam regions in the country. As a result, it was found that in the development and use of hydrothermal energy utilizing regional raw water supply line the urban planning conditions of the supply site can have a greater impact on the location selection results than the hydrothermal energy development itself. Due to the characteristics of the evaluation indicators developed in this study and their nature as comprehensive indicators, it is believed that the results should be applied to determine the overall adequacy of site selection in the early stages of hydrothermal energy development. In the future, it is believed that it will be necessary to analyze the problems in supplying and operating hydrothermal energy using raw water from multi-purpose dams and regional water resources. Based on the analysis the evaluation system developed in this study is expected to be improved and supplemented.

Synthesis and Characterization of Co-Surfactant Templated Mesoporous Materials with Enhanced Hydrothermal Stability

  • Kim Geon-Joong;Kim Hyun-Seok;Ko Yoon Soo;Kwon Yong Ku
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.499-505
    • /
    • 2005
  • Ordered mesoporous materials with a hydrothermally-stable, protozeolitic framework were prepared by exploring the direct conversion of inorganic species based on co-surfactant templating systems. To confer hydrothermal stability on the mesoporous aterials, the organic-inorganic hybrids were heat-treated in strongly basic media. Co-surfactant templating systems of cetyltrimethylammonium bromide [$C_{16}H_{13}(CH_{3})_{3}$NBr, CTAB] with 1,3,5-trim­ethylbenzene (TMB) or a nonionic block copolymer of poly(ethylene oxide )-b-poly(propylene oxide )-b-poly(ethyl­ene oxide) ($EO_{20}PO_{70}EO_{20}$) were employed to improve the hydrothermal stability of the organic-inorganic self-assembly during the solid rearrangement process of the inorganic species. The mesoscopic ordering of the pore structure and geometry was identified by X-ray diffraction, small angle neutron scattering and electron microscopy.

Sulfur Isotope Composition of Seafloor Hydrothermal Vents in the Convergent Plate Boundaries of the Western Pacific: A Role of Magma on Generation of Hydrothermal Fluid (서태평양 지판소멸대의 해저열수분출구에서 관찰되는 황동위원소 조성변화: 열수 생성의 다양성과 마그마의 역할)

  • Kim, Jong-Uk;Moon, Jai-Woon;Lee, Kyeong-Yong;Lee, In-Sung
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.145-156
    • /
    • 2012
  • Seafloor hydrothermal system occurs along the volcanic mid-ocean ridge, back-arc spreading center, and other submarine volcanic regions. The hydrothermal system is one of the fundamental processes controlling the transfer of energy and matter between crust/mantle and ocean; it forms hydrothermal vents where various deepsea biological communities are inhabited and precipitates metal sulfide deposits. Hydrothermal systems at convergence plate boundaries show diverse geochemical properties due to recycle of subducted material compared to simple systems at mid-ocean ridges. Sulfur isotopes can be used to evaluate such diversity in generation and evolution of hydrothermal system. In this paper, we review the sulfur isotope composition and geochemistry of hydrothermal precipitates sampled from several hydrothermal vents in the divergent plate boundaries in the western Pacific region. Both sulfide and sulfate minerals of the hydrothermal vents in the arc and backarc tectonic settings commonly show low sulfur isotope compositions, which can be attributed to input of magmatic $SO_2$ gas. Diversity in geochemistry of hydrothermal system suggests an active role of magma in the formation of seafloor hydrothermal system.

Multi-Objective Short-Term Fixed Head Hydrothermal Scheduling Using Augmented Lagrange Hopfield Network

  • Nguyen, Thang Trung;Vo, Dieu Ngoc
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1882-1890
    • /
    • 2014
  • This paper proposes an augmented Lagrange Hopfield network (ALHN) based method for solving multi-objective short term fixed head hydrothermal scheduling problem. The main objective of the problem is to minimize both total power generation cost and emissions of $NO_x$, $SO_2$, and $CO_2$ over a scheduling period of one day while satisfying power balance, hydraulic, and generator operating limits constraints. The ALHN method is a combination of augmented Lagrange relaxation and continuous Hopfield neural network where the augmented Lagrange function is directly used as the energy function of the network. For implementation of the ALHN based method for solving the problem, ALHN is implemented for obtaining non-dominated solutions and fuzzy set theory is applied for obtaining the best compromise solution. The proposed method has been tested on different systems with different analyses and the obtained results have been compared to those from other methods available in the literature. The result comparisons have indicated that the proposed method is very efficient for solving the problem with good optimal solution and fast computational time. Therefore, the proposed ALHN can be a very favorable method for solving the multi-objective short term fixed head hydrothermal scheduling problems.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

A Study on Deep Geothermal Energy and Potential of Geothermal Power Generation in Mongolia (몽골의 심부 지열에너지 자원과 지열발전에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Kiem, Young-Seek;Hahn, Chan;Park, Yu-Chul;Mok, Jong-Gu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • Mongolia has three(3) geothermal zones and eight(8) hydrogeothermal systems/regions that are, fold-fault platform/uplift zone, concave-largest subsidence zone, and mixed intermediate-transitional zone. Average temperature, heat flow, and geothermal gradient of hot springs in Arhangai located to fold-fault platform/uplift zone are $55.8^{\circ}C$, 60~110 mW/m2 and $35{\sim}50^{\circ}C/km$ respectively and those of Khentii situated in same zone are $80.5^{\circ}C$, 40~50 mW/m2, and $35{\sim}50^{\circ}C/km$ separately. Temperature of hydrothermal water at depth of 3,000 m is expected to be about $173{\sim}213^{\circ}C$ based on average geothermal gradient of $35{\sim}50^{\circ}C/km$. Among eight systems, Arhangai and Khentii located in A type hydrothermal system, Khovsgol in B type, Mongol Altai plateau in C type, and Over Arhangai in D type are the most feasible areas to develop geothermal power generation by Enhanced Geothermal System (EGS). Potential electric power generation by EGS is estimated about 2,760 kW at Tsenher, 1,752 kW at Tsagaan Sum, 2,928 kW at Khujir, 2,190 kW at Baga Shargaljuut, and 7,125 kW at Shargaljuut.