• Title/Summary/Keyword: hydrothermal quartz

Search Result 265, Processing Time 0.027 seconds

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

Material Characteristics and Provenance Interpretation for Chloritic Beads from the Boseong Geoseokri and Haenam Buntori Sites, Korea (보성 거석리 및 해남 분토리 유적 출토 녹니석제 구슬의 재질특성과 원산지 해석)

  • Kim, Ji-Young;Lee, Chan-Hee;Kim, Jin-Young
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.25-37
    • /
    • 2008
  • This study focuses on identification of mineralogical and geochemical characteristics and interpretation of raw material sources for prehistoric chlorite beads excavated from Geoseokri site in Boseong and Buntori site in Haenam, Korea. These prehistoric beads consist of three grayish blue ring-shaped beads, one dark green tubular bead and one greenish black tubular bead that show acicular-columnar and fibrous microtexture. The beads are composed of $SiO_2$, $Al_2O_3$, MgO and FeO as majors and a trace amount of $K_2O$, CaO and Na_2O$. Mineral species is mostly chlorite with a small amount of quartz and feldspar. Quantitative analysis indicates that the grayish blue ring-shaped beads and the dark green tubular bead belong to clinochlore and the greenish black tubular bead does to the boundary between clinochlore and sheridantie. Chlorite is a hydrous phyllosilicate mineral and it shows various microtexture of acicular, sheeted, earthy, granular andfibrous shapes. As its hardness is 2, chlorite is easily engraved due to its softness. It has aesthetic worthy as it shows green, black and greenish gray colors and pearly to greasy luster as well. These factors would lead to the extensive use of chloritic beads as ornaments from prehistoric times. Though the mineral sources of the chlorite beads can be found in central western region of Chungnam and Iwon of Hamnam, those areas are too distant from the two relic sites. Instead, chlorite ores commonly occur as altered products in wall rock alteration zone of every hydrothermal deposit. Therefore, it is probable that raw materials of chlorite were supplied from neighboring hydrothermal environment rather than far deposits. The result needs further study to verify raw material provenance interpretation, supply, manufacture and distribution on the basis of archaeological points of view.

  • PDF

Reflectance and Microhardness Characteristics of Sulfide Minerals from the Sambong Copper Mine (삼봉동광산산(三峰銅鑛山産) 유화광물(硫化鑛物)의 반사도(反射度)와 미경도(微硬度) 특성(特性))

  • Chi, Se Jung
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.115-139
    • /
    • 1984
  • The Cu-Pb-Zn-Ag hydrothermal vein-type deposits which comprise the Sambong mine occur within calc-alkaline volcanics of the Cretaceous Gyeongsang Basin. The ore mineralization took place through three distinct stages of quartz (I and II stages) and calcite veins (III stage) which fill the pre-existing fault breccia zones. These stages were separated in time by tectonic fracturing and brecciation events. The reflection variations of one mineral depending on mineralization sequence are considered to be resulted from variation in its chemical composition due to different physico-chemical conditions in the hydrothermal system. The reflection power of sphalerite increases with the content of Fe substituted for Zn. Reflectances of the sphalerite grain are lower on (111) than on (100) surface. The spectral profiles depend on the internal reflection color. Sphalerite, showing green, yellow and reddish brown internal reflection, have the highest reflection power at $544m{\mu}$ (green), $593m{\mu}$ (yellow) and $615m{\mu}$ (red) wavelength, respectively. Chalcopyrite is recognized as biaxial negative from the reflectivity data of randomly oriented grains measured at the most sensitivity at $544m{\mu}$. The microindentation hardness against the Fe content (wt. %) for the sphalerite increases to 8.05% Fe and then decreases toward 9.5% Fe content. Vickers hardness of the sphalerite is considerably higher on surface of (100) than on (111). The relationship between Vickers hardness and crystal orientation of the galena was determined to be $VHN_{(111)}$ > $VHN_{(210)}$ > $VHN_{(100)}$. The softer sulfides have the wider variation of the diagonal length in the indentation. Diagonal length in the indentation is pyrite

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 원소거동과 광물조성 특성)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.137-151
    • /
    • 2013
  • This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, $SiO_2$ shows the highest content which ranges from 61.6 to 71.0%, and $Al_2O_3$ is also high as having the 10.8~15.8% range. Alkali elements such as $Na_2O$ and $K_2O$ are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and $Fe_2O_3$ is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba and Sr, whereas enriched in $Fe_2O_3$, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.

Interpretation of Deformation History and Paleostress Based on Fracture Analysis Exposed in a Trench (트렌치에서의 단열분석을 통해 도출한 단열발달사 및 고응력 해석: 울산 신암리의 예)

  • Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.33-49
    • /
    • 2016
  • The study area, located in Sinam-ri, Ulsan, in the southeastern part of the Korean Peninsula, is mainly composed of hornblende granite (ca. 65 Ma). Fracturing and reactivation of a fault striking ENE-WSW was strongly controlled by the intrusion of a mafic dyke (ca. 44 Ma), which behaves as a discontinuity in the mechanically homogeneous pluton, increasing the instability of the basement in this area. A geometric and kinematic study undertaken to interpret the faults and fractures was performed in a trench excavated almost perpendicular to the orientation of the dyke. The analysis of structural elements, such as dykes, veins, and faults, is used to infer the deformation history and to determine the paleostress orientations at the time of formation of the structures. The deformation history established based on this analysis is as follows: (1) NNE-SSW, E-W, ENE-WSW, and NE-SW trending fractures had already developed in the pluton before dyke intrusion; (2) felsic dykes intruded under conditions of σHmax oriented N-S and σHmin oriented E-W; (3) mafic dykes intruded under conditions of σHmax oriented E-W and σHmin oriented N-S; (4) dextral reactivation of the main fault associated with the development of hydrothermal quartz veins under conditions of σHmax oriented E-W and σHmin oriented N-S; (5) sinistral reactivation of the main fault and high-angle normal faults under conditions of σHmax oriented NE-SW and σHmin oriented NW-SE; and (6) dextral reactivation of the main fault and NE-SW low-angle reverse faults under conditions of σHmax oriented NW-SE and σHmin oriented NE-SW. These results are consistent with the tectonic history of the Pohang-Ulsan block in the southeastern part of the Korean Peninsula, and indicates the tectonic deformation of the southern area of the Ulsan fault bounded by Yangsan fault was analogous to that of the Pohang-Ulsan area from the Cenozoic. This work greatly aids the selection of sites for critical facilities to prevent potential earthquake hazards in this area.

Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula (한반도 동남부 제4기 단층 비지의 광물학적 및 지구화학적 연구)

  • 손승완;장태우;김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • XRF, XRD, EPMA have been used to investigate microstructures and mineralogical changes caused by the faulting and fluids associated with faulting in the Quaternary fault gouge zones at the Sangchon, Ipsil and Wangsan faults located at the southeastern part of the Korean Peninsula. The chemical compositions of faulted rocks and protoliths analyzed by XRF show that the fault gouges are relatively enriched in TiO$_2$, P$_2$O$_{5}$, MgO, and Fe$_2$O$_3$) compared with protoliths, indicating that the fluids associated with faulting were highly activated. XRD results show that the fault gouges predominantly consist of quartz, feldspar, calcite and clay minerals. Clay minerals formed in the gouge zones are mainly composed of smectite characterized by a dioctahedral sheet. Based on EPMA analyses various kinds of sulfide, carbonate, phosphate minerals were identified in the gouge zones and protoliths. Xenotime of grey fault gouge of the Sangchon fault and sulfide minerals of contact andesitic rock of Ipsil fault and contact grey andesitic rock of Wangsan fault were probably formed by inflow of hydrothermal solution associated with faulting prior to the Quaternary. Carbonate minerals of contact andesitic rock and gouge zone of the Ipsil fault were formed by inflow of fluid associated with faulting prior to the Quaternary. They are heavily fractured and have reaction rim on their edge, indicating that faultings and inflow of fluids were highly activated after carbonate minerals were formed. Calcites of Wangsan fault seemed to be formed in syntectonic or posttectonic Quaternary faulting.g.

Revaluation of Ore Deposits within the Yeongam District, Cheollanamdo-Province: The Eunjeok and Sangeun Mines (전남 영암지역 광상 재평가: 은적.상은 광산를 중심으로)

  • Heo, Chul-Ho;Park, Sung-Won;Lee, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.73-84
    • /
    • 2010
  • Gold and silver deposits within the Eunjeok and Sangeun mines are located in Yeongam district, Cheollanamdo-province. They are composed of vein ore bodies infilling the fractures of Cretaceous rhyolitic tuff. The Eunjeok mine have three gold and silver bearing hydrothermal veins which is infilling the fracture of rhyolitic tuff. Major ore minerals within the Eunjeok and Sangeun mines are arsenopyrite, pyrite, chalcopyrite, sphalerite and galena and minor ores are electrum, native silver and argentite. Sericitization is dominant in alteration zone and chloritization and dickitization is minor. Quartz veins in the Eunjeok and Sangeun mine have the similar paragenesis and vein textures such like breccia, crustiform, comb and vuggy morphology indicating the formation of typical epithermal environment. In order to carry out the preliminary feasibility study of mine according to the commodity and elucidate the occurrence features of mineral resources from Eunjeok and Sangeun mine, common commodity (Pb, Zn, Cu, Fe, Mo, W, Au and U), and industrial commodity (In, Re, Ga, Ge, Se, Te, Y, Eu and Sm) for 17 ore specimen were analyzed. It is tentatively thought that there is no exploitable mine for iron, lead, zinc, copper, tungsten and uranium based on the preliminary result. If the reserves are secured through the detailed prospecting in case of molybdenum and silver, it is tentatively thought that there will be exploitable deposits depending on international metal price. If we assume the vein width from 0.25 m to 2 m including alteration zone with the gold grade of 80g/t, it is inferred that the resources amount of the Eunjeok-Sangeun mines range from 6.5 to 65ton. However, as the vein structure of the Eunjeok and Sangeun mines is developed together with alteration zone, it should be estimated to include potential alteration zone in order to yield the average grade. It is needed to carry out more exploration in the near future because the reserves can be flexibly estimated according to the change of average grade considering the alteration zone.

Geochemical Studies on Au-Ag Hydrothermal Vein Deposits, Republic of Korea : Goryeong-Waegwan Mineralized Area (한반도(韓半島) 금(金)-은(銀) 열수(熱水) 광상(鑛床)의 지화학적(地化學的) 연구(硏究) : 고령(高靈)-왜관지역(倭館地域) 광화대(鑛化帶))

  • So, Chil-Sup;Choi, Sang-Hoon;Chi, Se-Jung;Choi, Seon-Gyu;Shelton, Kevin L.
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.221-235
    • /
    • 1989
  • Gold-silver mineralization of the Goryeong-Waegwan area was deposited in three stages of quartz and calcite veins which fill fissures in Cretaceous sedimentary rocks of the Sindong Group. Radiometric dating indicates that mineralization is Late Cretaceous age(98 Ma) likely associated genetically with intrusion of a small biotite granite stock. Fluid inclusion and stable isotope data indicate that Au-Ag ore was deposited at temperatures between $280^{\circ}C$ and $230^{\circ}C$ from fluids with salinities between 1.7 and 8.7 equiv.wt.% NaCl. Evidence of boiling indicates pressures of <100 bars, corresponding to depths of 425 and 1,150m, respectively, assuming lithostatic and hydrostatic loads. Within ore stage I there is an apparent decrease in ${\delta}^{34}S$ values of $H_2S$ with paragenetic time, from +1.4 to -2.5 per mil. This pattern was likely achieved through progressive increases in pH and activity of oxygen accompanying boiling. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids(${\delta}D$ = -90 to -100 per mil; ${\delta}^{18}O$ = +3.9 to -11.4 per mil) indicate meteoric water dominance, approaching unex-changed meteoric water values. Au-Ag deposition is thought to be the result of cooling and dilution of a boiling fluid through mixing with less evolved meteoric waters.

  • PDF