• Title/Summary/Keyword: hydrothermal carbonization reaction

Search Result 14, Processing Time 0.022 seconds

Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery (수열탄화를 이용한 하수 슬러지의 고형연료화 및 에너지 회수 효율)

  • Kim, Daegi;Lee, Kwanyong;Park, Kiyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Recently, Korea's municipal wastewater treatment plants generated amount of wastewater sludge per day. However, ocean dumping of sewage sludge has been prohibited since 2012 by the London dumping convention and protocol and thus removal or treatment of wastewater sludge from field sites is an important issue on the ground site. The hydrothermal carbonization is one of attractive thermo-chemical method to upgrade sewage sludge to produce solid fuel with benefit method from the use of no chemical catalytic. Hydrothermal carbonization improved that the upgrading fuel properties and increased materials and energy recovery, which is conducted at temperatures ranging from 200 to $350^{\circ}C$ with a reaction time of 30 min. Hydrothermal carbonization increased the heating value though the increase of the carbon and fixed carbon content of solid fuel due to dehydration and decarboxylation reaction. Therefore, after the hydrothermal carbonization, the H/C and O/C ratios decreased because of the chemical conversion. Energy retention efficiency suggest that the optimum temperature of hydrothermal carbonization to produce more energy-rich solid fuel is approximately $200^{\circ}C$.

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

A comparison study of extraction methods for bio-liquid via hydrothermal carbonization of food waste

  • Bang, YeJin;Choi, Minseon;Bae, Sunyoung
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.112-121
    • /
    • 2018
  • The hydrothermal carbonization method has received great attention because of the conversion process from biomass. The reaction produces various products in hydrochar, bio-liquid, and gas. Even though its yield cannot be ignored in amount, it is difficult to find research papers on bio-liquid generated from the hydrothermal carbonization reaction of biomass. In particular, the heterogeneity of feedstock composition may make the characterization of bio-liquid different and difficult. In this study, bio-liquid from the hydrothermal carbonization reaction of food wastes at $230^{\circ}C$ for 4 h was investigated. Among various products, fatty acid methyl esters were analyzed using two different extraction methods: liquid-liquid extraction and column chromatography. Different elutions with various solvents enabled us to categorize the various components. The eluents and fractions obtained from two different extraction methods were analyzed by gas chromatography with a mass spectrometer (GC/MS). The composition of the bio-liquid in each fraction was characterized, and seven fatty acid methyl esters were identified using the library installed in GC/MS device.

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge (하수슬러지의 수열탄화를 통한 고형연료 탄화 특성)

  • Seong Kuk Han;Moonil Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.53-61
    • /
    • 2023
  • Most of the sewage sludge is organic waste containing a large amount of organic substances decomposable by microorganisms by biological treatment. As for existing sewage sludge treatment methods, reduction and fuel conversion are being carried out using technologies such as drying, incineration, torrefaction, carbonization. However, the disadvantage of high energy consumption has been pointed out as latent heat of 539 kcal/kg is consumed based on drying. Therefore, in this study, we intend to produce solid fuel through hydrothermal carbonization(HTC), which is a thermochemical treatment. To evaluate the value of solid fuel, the characteristics of carbonization and fuel ratio were analyzed. As a result, as the hydrothermal carbonization reaction temperature increased, the lower heating value also increased by about 500 kcal/kg due to the increase in the degree of carbonization. H/C, O/C, ratio showed a decreasing trend from 1.78, 0.46 to 1.57, 0.32. When the ratio of ash to combustible content (fixed carbon + volatile) of dry sludge was 0.25 or more, it was derived that the degree of carbonization and calorific value did not increase even when hydrothermal carbonization was performed.

A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process (열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구)

  • HAN, DANBEE;YEOM, KYUIN;PARK, SUNGKYU;CHO, OOKSANG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.

Conversion of Wood Waste into Solid Biofuel Using Catalytic HTC Process (촉매 열수탄화(Hydrothermal carbonization)공정을 이용한 폐목재의 고형연료 제조 및 특성 연구)

  • Joo, Bokyoung;Yeon, Hyejin;Lee, Sangil;Ahn, Soojeung;Lee, Kyeongjae;Jang, Eunsuk;Won, JongChoul
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.12-18
    • /
    • 2014
  • The objective of this work is to produce solid biofuel from sawdust using the HTC (Hydrothermal carbonization) process. The HTC process of feedstock involves the raw material coming into contact with high temperature and pressurized water. The HTC process could produce gaseous, liquefied and solid products, but this study focused on solid product only as an alternative to coal. In this study, sawdust used for a feedstock and its moisture content was under 5%. Water was added with the feedstock to raise moisture content to 80% and also used catalysts. The HTC process was performed at temperature range from 200 to $270^{\circ}C$ and reaction time was 15 to 120 min. Rising temperature resulted in increasing the higher heating value (HHV) of HTC product. In case of adding catalyst, HHV of solid biofuel was higher and reaction occurred at lower temperature and pressure. Also, HTC solid product had been characterized and found to be hydrophobic, increased HHV (over 40%), and pelletized easily compared to raw material.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

The Characteristics of the Biochar with the Synthetic Food Waste and Wood Waste for Soil Contaminated with Heavy Metals (인공 음식물 혼합 폐기물 바이오차의 토양 중금속 흡착 가능성을 위한 특성 분석)

  • Baek, Ye-Seul;Lee, Jai-Young;Park, Seong-Kyu;Bae, Sunyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • When processing the biomass by Hydrothermal carbonization (HTC), a slow pyrolysis process, it produces bio-gas, biooil, and biochar. Among these end products, biochar is known for isolating or storing carbon and being used as a soil amendment. In this study, the characteristics of biochar generated by HTC at $250^{\circ}C$ for 1 hour, 2 hours, 3 hours, and 20 hours with synthetic food wastes and wood wastes were analyzed for potential uses in soil contaminated with heavy metals. The yield of biochar (weight %) increased when the ratio of wood wastes increased and showed a decreasing tendency as reaction time increased. Elemental analysis of biochar based on various conditions showed a maximum of 70% carbon (C) content. The carbon content showed an increasing tendency with the increase of wood wastes. Iodine adsorption test was peformed to determine the optimum reaction condition, which was 15% wood waste for mixing ratio and 2 hours for reaction time. Using biochar generated at the optimum condition, its capability of adsorbing heavy metals (Cd, Cu, Pb, Zn, Ni) was evaluated. It was concluded that lead (Pb) was removed efficiently while zinc (Zn) and nickel (Ni) were hardly adsorbed by biochar.