• Title/Summary/Keyword: hydrophobic property

Search Result 202, Processing Time 0.033 seconds

Effects of Surface Modification with Amino Terminated Polydimethylsiloxane(ATP) on the Corrosion Protection of Epoxy Coating

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.103-109
    • /
    • 2009
  • An epoxy coating was designed to give a hydrophobic property on its surface by modifying it with three types of Amino Terminated Polydimethylsiloxane (ATP), and then effects of the modification on the structure, surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified epoxy coating were examined using FT-IR spectroscopy, hydrothermal cyclic test, and impedance test. The surface of epoxy coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between epoxy and modifier by the modification. The phase separation tendency is more appreciable when modified by ATP with higher molecular weight ATP at higher content. Water transport behavior of the modified epoxy coating decreased more in that with higher hydrophobic surface property. The resistance to localized corrosion of the modified epoxy coated carbon steel was well agreed with its water transport behavior and hydrophobic tendency.

Surface Chemical Studies on Flotation Processes -Importance of the Hydrophobic Property of Solid Particles in Flotation Efficiency- (부유부상 공정에 대한 표면화학적 연구 -부유부상 효율과 고형입자의 소수화도-)

  • 이학래;이진희;허용성;조중연;한신호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • The immediate purposes of this study is to establish the surface chemical principles associated with the flotation process of waste papers and to verify them by practical flotation experiments. To achieve this AKD sized hydrophobic microcrystallince cellulose (MCC) with different levels of hydrophobicity, and hydrophilic MCC dyed with black were prepared as model substances. The effects of surface characteristics on flotation efficiency were evaluated by measuing the brightness of the flotation rejects obtained after the flotation experiments carried out using MCC mixtures prepared with different ratios of hydrophobic and hydrophilic MCCs. Results showed that more than 90% of the flotation rejects consisted of hydrophobic MCC indicating the critical importance of the hydrophobicity of the materials in the flotation process. The proportions of hydrophobic materials in the reject remained constant when highly sized MCC was used as a model of hydrophobic substance.

  • PDF

Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

  • Jeon, Jae Hong;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.170-177
    • /
    • 2014
  • Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ${\mid}Z{\mid}$ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior.

Development of micro- and nanostructures mimicking natural leaf surfaces for controlled hydrophilic and hydrophobic property

  • Kim, Daun;Park, Sunho;Lee, Dohyeon;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.110-110
    • /
    • 2017
  • Biological systems offer unique principles for the design and fabrication of engineering platforms (i.e., popularly known as "Biomimetics") for various applications in many fields. For example, the lotus leaves exhibit unique surfaces consisting of evenly distributed micro and nanostructures. These unique surfaces of lotus leaves have the ability of superhydrophobic property to avoid getting wet by the surrounding water (i.e., Lotus effect). Inspired by the surface topographies of lotus leaves, the artificial superhydrophobic surfaces were developed using various micro- and nanoengineering. Here, we propose new platforms that can control hydrophilic and hydrophobic property of surfaces by mimicking micro- and nanosurfaces of various natural leaves such as common camellia, hosta plantaginea, and lotus. Using capillary force lithography technology and polymers in combination with biomimetic design principle, the unique micro- and nanostructures mimicking natural surfaces of common camellia, hosta plantaginea, and lotus were designed and fabricated. We also demonstrated that the replicated polymeric surfaces had different hydrophilic and hydrophobic properties according to the mimicking the natural leaf surfaces, which could be used as a simple, but powerful methodology for design and fabrication of controlled hydrophilic and hydrophobic platforms for various applications in the field of agriculture and biological engineering.

  • PDF

Hydrophobic property of surface glaze of ceramic tiles by copper powder addition (구리 분말 첨가를 통한 도자타일 표면유약의 소수화 특성)

  • Choi, Cheong-Soo;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.215-221
    • /
    • 2019
  • Ceramic tiles, which are widely used as interior and exterior materials for construction, have recently been required to have pollution prevention function. In order to remove contaminants, many researches of ceramic tiles with hydrophilic surface property through $TiO_2$ coating and hydrophobic surface property by improving the flow of water droplets have been proceeded. Expecially, it is very important to develop a surface glaze having hydrophobicity through a sintering process above $1000^{\circ}C$ without an additional coating process and the degradation of mechanical properties. In this study, surface glaze with copper powder was applied to manufacture of ceramic tile. Contact angle of ceramic tile according to thickness of surface glaze layer was investigated after the conventional sintering process. The contact angle of the ceramic tile surface without the copper powder was shown to be $25.3^{\circ}$, which is close to hydrophilic surface. However, the contact angle was increased up to $109.8^{\circ}$ when the thickness of surface glaze with the copper powder was $150{\mu}m$. The excellent hydrophobic property of the surface glaze with copper powder was resulted from the cellular structure of copper particles on the glaze surface. In addition, the mechanical properties of the developed hydrophobic ceramic tiles such as bending strength, chemical resistance, abrasion resistance, and frost resistance were well maintained and meet the criteria of 'KS L 1001 Ceramic tile'.

The Effects of Hydrophobic Buffer Layer Without Losing Dielectric Property on Organic Transistors

  • Song, June-Yong;Jung, Jae-Il;Choi, Yoon-Seuk;Kim, Hak-Rin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.737-740
    • /
    • 2007
  • The buffer layer was spin-coated on the dielectric layer of OTFTs to introduce the hydrophobicity for enhancing the device performance. this functional layer contains the water-proof ingredient to reduce the surface energy and more importantly, does not harm the dielectric property of the dielectric layer. With the help of proposed hydrophobic layer, the transistor showed dramatic improvement at electrical performance which was almost 20 times higher mobility compared to the non-treated case. And on/off ratio was also guaranteed as $10^{5{\sim}6}$.

  • PDF

Failure Analysis of Commercial Water-Repellent Coatings for High Temperature Plant (플랜트 부품용 상용 발수코팅의 고온 환경 고장 특성 비교 분석)

  • Lee, Byung-Ho;Kim, Hye-young;Hyeon, Chang-young;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.78-82
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate failure characteristic and mechanism of four commercial water-repellent coatings for elevated temperature machinery applications. Method: Thermal degradation was performed for up to 64 thermal cycles. 1 cycle consists of 15 minute holding at 523K under 300rpm revolution and 15 minute-natural cooling. Contact angle was measured and microstructure of the coating layer was observed by using a scanning electron microscope. Results: Four kinds of commercial repellent coating showed hydrophobic or super-hydrophobic property implying that all coatings are suitable for room temperature application. Contact angle of three kinds of commercial coatings decreased rapidly after thermal exposure, while only one specimen having hydrophobic surface showed extremely slow degradation. Conclusion: Observed decrease in contact angle of the coatings were attributed to formation of macro-sized pores and disappearance of micro-protrusion during thermal exposure. Optimum water-repellent coating needs to be selected under the consideration of initial contact angle as sell as service temperature.

The Annealing Effect of Diamond-like Carbon Films for RF MEMS Switch

  • Hwang, Hyun-Suk;Choi, Won-Seok;Cha, Jae-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1091-1096
    • /
    • 2010
  • Stiction in microelectromechanical systems (MEMS) has been a major failure mechanism. Especially, in RF MEMS switches, moving parts often suffered in-use and release related stiction problems. Some materials and methods have been used to prevent this problem. Diamond-like carbon (DLC) has not only been used as a protective material owing to its good mechanical properties but also has been used as a hydrophobic material. Its properties could be controlled by post annealing treatment in various conditions. We synthesized DLC films using a radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas. Then, the change of the hydrophobic property of the films was investigated undervarious annealing temperatures in nitrogen and in oxygen ambient. The films, that were annealed above $700^{\circ}C$ in nitrogen ambient, showed a high contact angle of water (> $90^{\circ}$) even though their mechanical property was sacrificed to some degree. The structural variation and the changes of the hydrophobic and mechanical properties of the DLC films were analyzed by Raman spectrum, contact angle measurement, surface profiler, and a nanoindentation test.

Fabrication of Super Water Repellent Surfaces by Vacuum Plasma (진공 플라즈마 처리를 통한 초소수성 표면 제작 및 특성 평가)

  • Rha, Jong-Joo;Jeong, Yong-Soo;Kim, Wan-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.143-147
    • /
    • 2008
  • Super-hydrophobic surfaces showed that contact angle of water was higher than 140 degrees. That surface could be made several methods such as Carbon nano tubes grown vertically, PDMS asperities arrays, hydrophobic fractal surfaces, and self assembled monolayers coated by CVD and so on. However, we fabricated super-hydrophobic surfaces with plasma treatments which were very cost efficient processes. Their surfaces were characterized by static contact angles, advancing, receding, and stability against UV irradiation. Optimal surfaces showed static contact angles were higher than 150 degrees. Super-hydrophobic property was remained after UV irradiation for one week.

Anti-fouling Property of Hydrophobic Surfaces in Sea Water (소수성 표면의 해수 방오성능)

  • Cho, S.H.;Ryu, S.N.;Hwang, W.B.;Yoon, B.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Effects of material surface property, hydrophobic or hydrophilic, on the bio-fouling occurred on the bodies submerged in the sea water are investigated experimentally. 4 test models are used in the experiment, which includes aluminum foil in common use, AAO applied hydrophobic surface, HDFS coated hydrophobic surface and hydrophilic surface. Hydrophobic surfaces with numerous micro & nano-scale pillars on it seems to play very important role of preventing them from fouling in initial stage while the effects disappear in long term sense of fouling process. It is concluded that the surface hydrophobicity retards the initial fouling until the fouling thickness is smaller than the heights of the pillars on it but the effects diminish with the fouling proceeds so that the thickness grows bigger than the pillar heights.