• Title/Summary/Keyword: hydrophobic acid

Search Result 425, Processing Time 0.024 seconds

A Study on the Distribution and Property of Carbonaceous Materials in the Subsurface Sediments near the Imjin River (임진강변 퇴적층 내 탄소물질들의 분포 및 특성 연구)

  • Jeong, Sang-Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.34-43
    • /
    • 2010
  • The fate of hydrophobic organic contaminants (HOCs) in ground water is highly affected by the distribution and property of the carbonaceous materials (CMs) in subsurface sediments. CMs in soils consist of organic matters (e.g., cellulose, fulvic acid, humic acid, humin, etc.) and black carbon such as char, soot, etc. The distribution and property of CMs are governed by source materials and geological evolution (e.g., diagenesis, catagenesis, etc.) of them. In this study, the distribution and property of CMs in subsurface sediments near the Imjin river in the Republic of Korea and HOC sorption property to the subsurface sediments were investigated. The organic carbon contents of sand and clay/silt layers were about 0.35% and 1.37%, respectively. The carbon contents of condensed form of CMs were about 0.13% and 0.45%, respectively. The existence of black carbon was observed using scanning electron microscopes with energy dispersive spectroscopy. The specific surface areas (SSA) of CMs in heavy fraction(HFrCM) measured with N2 were $35-46m^2/g$. However, SSAs of those HFrCM mineral fraction was only $1.6-4.3m^2/g$. The results of thermogravimetric analysis show that the mass loss of HFrCM was significant at $50-200^{\circ}C$ and $350-600^{\circ}C$ due to the degradation of soft form and condensed form of CMs, respectively. The trichloroethylene (TCE) sorption capacities of sand and clay/silt layers were similar to each other, and these values were also similar to oxidzed layer of glacially deposited subsurface sediments of the Chanute Air Force Base (AFB) in Rantoul, Illinois. However, these were 7-8 times lower than TCE sorption capacity of reduced layer of the Chanute AFB sediments. For accurate prediction of the fate of hydrophobic organic contaminants in subsurface sediments, continuous studies on the development of characterization methods for CMs are required.

Spectroscopic Studies on the Mechanism of Interaction of Vitamin $B_{12}$ with Bovine Serum Albumin

  • Kamat, B.P.;Seetharamappa, J.
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • The mechanism of interaction of cyanocobalamin (CB) with bovine serum albumin (BSA) has been investigated by spectrofluorometric and circular dichroism methods. Association constant for the CB-BSA system showed that the interaction is non-covalent in nature. Binding studies in the presence of an hydrophobic probe, 8-anilino-l-naphthalene sulphonic acid, sodium salt (ANS) showed that there is hydrophobic interaction between CB and ANS and they do not share common sites in BSA. Stern-Volmer analysis of fluorescence quenching data showed that the fraction of fluorophore (protein) accessible to the quencher (CB) was close to unity indicating thereby that both tryptophan residues of BSA are involved in drug-protein interaction. The rate constant for quenching, greater than $10^{10}$ $M^{-1}$ $s^{-1}$, indicated that the drug binding site is in close proximity to tryptophan residue of BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of CB to BSA involves hydrophobic bonds predominantly. Significant increase in concentration of free drug was observed for CB in presence of paracetamol. Circular dichroism studies revealed the change in helicity of BSA due to binding of CB to BSA.

  • PDF

Effect of Alkyl Ketene Dimer(AKD) on Red Algae Reinforced Biocomposites (AKD 처리한 홍조류섬유 보강 바이오복합재료의 특성)

  • Lee, Min-Woo;Park, Dong-Hui;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.66-71
    • /
    • 2011
  • Biocomposites were fabricated with biodegradable polymers and natural fibers. Biocomposites have benefits of low cost, low density, and biodegradability over inorganic fiber composite, and give comparable strength properties. Hydrophobic polymer used for sizing in paper industry, AKD (Akenyl Keten Dimer), was applied to natural fibers, red algae fibers (RAF) in this study, to make fiber surfaces more compatible to hydrophobic nature of matrix polymers. Composites with RAF, kenaf, glass fibers, and carbon fibers have been fabricated by a compression molding method and their thermo-mechanical properties have been studied. Also, the thermal dimensional stability test was done from at 30 to $100^{\circ}C$. The storage moduli and the thermo-mechanical stabilities of polypropylene and poly lactic acid based biocomposites were improved by reinforcing with the RAF and much more with AKD treated fibers. Dimensional stability of biocomposite was also markedly improved by AKD pretrement on RAF.

Studies on Thermostable Tryptophanase from a Symbiotic Thermophile

  • Chung, Yong-Joon;Beppu, Teruhiko
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.515.1-515
    • /
    • 1986
  • Thermostable tryptophanase was extracted from a thermophilie bacterium, strain T which was absolutely symbiotic with strain 5. The enzyme was purified 14.7 fold with 5.8% yield by chromatographies using ion exchange, gel filtration, and hydrophobic interaction columns, followed by high performance liquid chromatography on hydroxyapatite column. The purified enzyme has a molecular weight of approximately 210,000 estimated by gel filtration column chromatography, and the molecular weight of subunit was determined by SDS polyacrylamide gel electrophoresis to be 46,000, which indicates that the native enzyme is made of four homologous subunits. The tryptophanase was stable at 65o0 and the optimum temperature for the enzyme activity for 20 min reaction was 70$^{\circ}C$. The purified enzyme activity for 20 min ieaction was 70$^{\circ}C$. The purified enzyme catalyzed the degradation of L-tryptophan into indole, pyruvate and ammonia in the presence of pyridoxal phosphate. 5-Hydroxy-Ltryptophan, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-L-cysteine, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-Lcysteine, and L-serine were also used as substrates to form pyruvate. The amino acid composition of the tryptophanase was determined, and found to contain a high percentage of hydrophobic amino acids, especially in the proline content, which was much higher than that of Escherichia coli tryptophanase. In addition, the 35N-terminal amino acid sequence of the tryptophanase was completely different from that of E. coli tryptophanase.

  • PDF

The Production of Hydrophobic Surfaces by the Adsorption of Perfluorocarboxylic Acids onto Metal Oxides (금속 산화물에 플루오르화 카르복시산을 흡착시킨 소수성 표면의 제조)

  • Ha, Ki Ryong;Lee, Myunghee;Chung, Chinkap
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.542-548
    • /
    • 2005
  • The self-assembled monolayers (SAMs) of perfluorocarboxylic acids were fabricated on several metal oxide powders. Perfluorododecanoic acid and perfluorooctadecanoic acid were used to study the effect of chain length on SAM. Alumina, Tantalia, Titania, and Zirconia were the metal powders used. The formation of the SAMs was confirmed by DRIFT(Diffuse Reflectance Infrared Fourier Transform) spectroscopy. Since the perfluorohydrocarbons are well known for their hydrophobicity, the resulting monolayers are also expected to have high hydrophobicity. The quality of DRIFT spectra of SAMs was dependent on the powder size as well as the element of metal oxides.

Drug Release from Thermo-Responsive Self-assembled Polymeric Micelles Composed of Cholic Acid and Poly(N-isopropylacrylamide)

  • Kim, In-Sook;Jeong, Young-Il;Lee, Yun-Ho;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.367-373
    • /
    • 2000
  • Cholic acid, conjugated with amine-terminated poly(W-isopropylacrylamide) (abbreviated as CA/ATPNIPAAm), was synthesized by a N, N'-dicyclohexyl carbodiimide (DCC)-mediated coupling reaction. Self-assembled CA/ATPNIPAAm micelles were prepared by a diafiltration method in aqueous media. The CA/ATPNIPAAm micelles exhibited a lower critical solution temperature (LCST) at $31.5^{\circ}C$. Micelle sizes measured by photon correlation spectroscopy (PCS) were approximately 31.6 $\times$$\times$ 5.8 nm. The CA/ATPNIPAAm micelles were spherical and their thermal size transition was observed by transmission electron microscope (TEM). A fluorescence probe technique was used for determining the micelle formation behavior of CA/ATPNIPAAm in aqueous solutions using Pyrene as a hydrophobic Probe. The critical micelle concentration (CMC) was evaluated as $8.9{\times}0^{-2}$ g/L. A drug release study was performed using indomethacin (IN) as a hydrophobic model drug. The release kinetics of IN from the CA/ATPNIPAAm micelles revealed a thermo-sensitivity by the unique character of poly(N-isopropylacrylamide) i.e. the release rate was higher at $25^{\circ}C$ than at $37^{\circ}C$.

  • PDF

The nonconserved N-terminus of protein phosphatases 1 influences its active site

  • Xie, XiuJie;Huang, Wei;Xue, ChengZhe;Wei, Qun
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.881-885
    • /
    • 2008
  • Protein phosphatase 1 consists of a secondary structure arrangement, conserved in the serine/threonine protein phosphatase gene family, flanked by nonconserved N-terminal and C-terminal domains. The deletion mutant of PP1 with the 8 nonconserved N-terminal residues removed was designated PP1-(9-330). PP1-(9-330) had a higher activity and affinity than PP1 when assayed against four different substrates, and it also demonstrated a 6-fold higher sensitivity to the inhibitor okadaic acid. This suggested that the N-terminal domain suppresed the activity of PP1 and interfered with its inhibition by okadaic acid. The ANS fluorescence intensity of PP1-(9-330) was greater than that of PP1, which implies that the hydrophobic groove running from active site in the truncated PP1 was more hydrophobic than in PP1. Our findings provide evidence that the nonconserved N-terminus of PP1 functions as an important regulatory domain that influences the active site and its pertinent properties.

Improvement of Bacterial Endo-1,4-,\beta-D-glucanase(CMCase) Secretion in Yeast by Mutagenesis of Glucoamylase Signal Sequence. (Glucoamylase 분비신호서열의 돌연변이에 의한 효모에서 세균의 Endo-1,4-\beta-D-glucanase의 분비능 증진)

  • 이준원;강대욱;김보연;오원근;민태익;이상원;변유량;안종석
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.4
    • /
    • pp.195-201
    • /
    • 2000
  • Glucoamylase of Saccharomyces diastaticus is produced as a large precursor composed of signal peptide (21 amino acid residues), Thr and Ser-rich region and functional glucoamylase. To evaluate the utility of the glucoamylase signal peptide (GSP) for the secretion of foreign proteins, four types of GSP mutants (ml : Pro-18 longrightarrowLeu-18, m2 : Tyr-13 longrightarrowLeu, m3 : Ser-9longrightarrowLeu-9, m4 : Asn-5 longrightarrowPro-5) were constructed and secretion efficiency of each mutant was compared with that of native GSP by the expression and secretion of Bacillus subtilis CMCase under the control of GAP in N-terminal domain and hydrophobic domain. n mutant 4, a polar amino acid was replaced by a helix - breaking Pro residue. CMCase activity assay and Western blot analysis revealed that CMCase secretion by GSP mutants replaced by Leu were increased compared with native GSP. In the case of m2 and m3, the substitution of Leu for Tyr-13 and Ser-9 in the hydrophobic region resulted in a twofold increase in the extracellular CMCase activity.

  • PDF

Tetrapyrazinoindoloporphyrazine Langmuir-Blodgett Films

  • Kim, Jong-Min;Jaung, Jae-Yun;Ahn, Hee-Joon
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.367-372
    • /
    • 2008
  • We fabricated tetra(5-n-nonyl-8-tert-butyl-2,3-pyrazino[2,3-b]indolo)porphyrazinato copper(II) (Cu-Pc-$C_8$) Langmuir-Blodgett (LB) films. We further investigated the influence of arachidic acid (AA) as a transfer promoter, as well as the effect of dipping speed, on the deposition of the films on hydrophilic and hydrophobic substrates. In the case of pure Cu-Pc-$C_8$ LB deposition on a hydrophilic substrate, the transfer ratio was close to one for up-stroke depositions, but the previously deposited film was peeled off and re-spread onto water at down-stroke depositions. Whereas the stability of the Cu-Pc-$C_8$ LB films was not improved by AA addition on hydrophilic substrates, the deposition of Cu-Pc-$C_8$ was significantly improved by the presence of AA on a hydrophobic substrate. The AA-assisted deposition had transfer ratio of close to 1 and was essentially stable up to 10-layer depositions. Comparison of the UV-visible spectrum of a Cu-Pc-$C_8$/AA LB film with that of Cu-Pc-$C_8$/AA solution in dichloroethane revealed that the Soret and Q bands for the Cu-Pc-$C_8$/AA LB film were broadened and red-shifted due to the aggregation of phthalocyanines upon assembly in the LB film.

The properties of hydrophobic concrete prepared by biomimetic mineralization method

  • Huang, Chung-Ho;Fang, Hao-Yu;Zhang, Jue-Zhong
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.351-359
    • /
    • 2019
  • In this study, the calcium hydroxide, an inherent product of cement hydration, was treated using biomimetic carbonation method of incorporating stearic acid to generate the hydrophobic calcium carbonate on concrete surface. Carbonation reaction was carried out at various $CO_2$ pressure and temperatures and utilizing the Scanning Electron Microscope (SEM), chloride-ion penetration test apparatus, and compression test machine to investigate the hydrophobicity, durability, and mechanical properties of the synthesized products. Experimental results indicate that the calcium stearate may change the surface property of concrete from hydrophilicity to hydrophobicity. Increasing reaction temperature can change the particles from irregular shapes to needle-rod structures with increased shear stress and thus favorable to hydrophobicity and microhardness. The contact angle against water for the concrete surface was found to increase with increasing $CO_2$ pressure and temperature, and reached to an optimum value at around $90^{\circ}C$. The maximum static water contact angle of 128.7 degree was obtained at the $CO_2$ pressure of 2 atm and temperature of $90^{\circ}C$. It was also found that biomimetic carbonation increased the permeability, acid resistance and chloride-ion permeability of the concrete material. These unique results demonstrate that the needle-rod structures of $CaCO_3$ synthetized on concrete surface could enhance hydrophobicity, durability, and mechanical properties of concrete.