• Title/Summary/Keyword: hydrophobic acid

Search Result 423, Processing Time 0.028 seconds

Evaluation of Haloacetic Acid Formation Potential in Drinking Water Treatment Process by Fraction Technique (정수처리 공정에서 용존 유기물질 분류에 의한 haloacetic acid 생성능 평가)

  • Son, Hee-Jong;Hwang, Young-Do;Ryu, Dong-Choon;Jung, Chul-Woo;Lee, Gun;Son, Hyeng-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1655-1662
    • /
    • 2014
  • A comprehensive fractionation technique was applied to a set of water samples obtained along drinking water treatment process with ozonation and biological activated carbon (BAC) process to obtain detailed profiles of dissolved organic matter (DOM) and to evaluate the haloacetic acid (HAA) formation potentials of these DOM fractions. The results indicated that coagulation-sedimentation-sand filtration treatment showed limited ability to remove hydrophilic fraction (28%), while removal of hydrophobic and transphilic fraction were 57% and 40%, respectively. And ozonation and BAC treatment showed limited ability to remove hydrophobic fractions (6%), while removal of hydrophilic and transphilic fractions were 25% and 18%. The haloacetic acid formation potential (HAAFP)/dissolved organic carbon (DOC) of hydrophilic fraction was the highest along the treatment train and HAAFP/DOC of hydrophilic fraction was higher than hydrophobic and transphilic fraction as 23%~30%, because of better removal for hydrophobic fraction both in concentration and reactivity.

Preparation and Cellular Uptake of Hydrophobic Quantum Dots Encapsulated in Poly-L-Lactic Acid Film (소수성 양자점을 함유한 Poly-L-Lactic Acid film의 제조 및 세포흡수 연구)

  • Lee, Ji-Sook;Woo, Kyoung-Ja;Chung, He-Sson
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • To overcome the stability problem of hydrophilic quantum dot (Q-dot), cellular uptake of hydrophobic instead of hydrophilic Q-dot was studied in the hope to find a simple method to use Q-dot as a cellular imaging probe. Hydrophobic Q-dot and poly-L-lactic acid (PLLA) were co-dissolved in chloroform to prepare stable films. Due to the cellular compatibility of PLLA, adherent cells were cultured on the film to observe the degree of Q-dot uptake and cytotoxicity of the prepared films. The results show that Q-dots were absorbed into NIH3T3 and EMT6 cells. Cellular uptake was also observed when hydrophobic Q-dots were coated directly on a glass plate. PLLA/Q-dot film and Q-dot coated on glass plate did not show major cytotoxicity. In vivo tumor model was also used to show the uptake of Q-dot from the PLLA/Q-dot film to the tumor site.

Competitive Inhibition of Pepsin by Carboxylic Acids (脂肪酸에 依한 Pepsin의 競走的 억제)

  • Hong Dae Shin
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.161-168
    • /
    • 1970
  • In order to obtain the more effective evidence, supporting the hypothesis which have been previously described by former report that pepsin (EC 3.4. 4.1) forms a hydrophobic bond with the nonpolar side chain of its substrate, the inhibitory effect of carboxylic acids(from formic acid to iso-butyric acid) on the activity of pepsin to the synthetic dipeptide, N-Carbobenzoxy-L-glutamyl-L-tyrosine, was discussed. The kinetic study showed that the inhibition by carboxylic acids was competitive. The Kidecreased with increasing size of the inhibitor molecule. The $-{\Delta}F^{\circ}$increased linearly with increasing number of carbon atoms in the hydrocarbon chain of the inhibitor. It was confirmed that the hydrophobic bond between more than one side chain of amino acid residues(phenylalanine) in the binding region of the active center of pepsin and the side chain of amino acid residues in the substrate was formed as the first step of its enzymic mechanism. The inhibitory effect of carboxylic acids was due to the competition of the hydrocarbon group of the carboxylic acids with the side chain of the substrate for the hydrophobic binding site(the side chain of phenylalanine) of the pepsin.

  • PDF

Hydrophilization of hydrophobic membrane surfaces for the enhancement of water flux via adsorption of water-soluble polymers

  • Kim, Ka Young;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.101-113
    • /
    • 2016
  • In this study, to improve the water flux of porous hydrophobic membranes, various water-soluble polymers including neutral, cationic and anionic polymers were adsorbed using 'salting-out' method. The adsorbed hydrophobic membrane surfaces were characterized mainly via the measurements of contact angles and scanning electron microscopy (SEM) images. To enhance the durability of the modified membranes, the water-soluble polymers such poly(vinyl alcohol) (PVA) were crosslinked with glutaraldehyde (GA) and found to be resistant for more than 2 months in vigorously stirred water. The water flux was much more increased when the ionic polymers used as the coating materials rather than the neutral polymer and in this case, about 70% of $0.31L/m^2{\cdot}h$ (LMH) to 0.50 LMH was increased when 300 mg/L of polyacrylamide (PAAm) was used as the coating agents. Among the cationic coating polymers such as poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA), poly(acrylic acid-comaleic acid) (PAM) and poly(acrylic acid) (PAA), PSSA_MA was found to be the best in terms of contact angle and water flux. In the case of PSSA_MA, the water flux was enhanced about 80%. The low concentration of the coating solution was better to hydrophilize while the high concentration inclined to block the pores on the membrane surfaces. The best coating condition was found: (1) coating concentration 150 to 300 mg/L, (2) ionic strength 0.15, (3) coating time 20 min.

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure (알루미늄 6061 합금의 표면 나노 구조물 변화에 따른 방빙 특성 연구)

  • Rian, Kim;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.476-486
    • /
    • 2022
  • Recently, aluminum 6061 instead of copper alloy is used for cooling heat exchangers used in the internal combustion of engines due to its economic feasibility, lightweight, and excellent thermal conductivity. In this study, aluminum 6061 alloy was anodized with oxalic acid, phosphoric acid, or chromic acid as an anodizing electrolyte at the same concentration of 0.3 M. After the third anodization, FDTS, a material with low surface energy, was coated to compare hydrophobic properties and anti-icing characteristics. Aluminum was converted into an anodization film after anodization on the surface, which was confirmed through Energy Dispersive X-ray Spectroscopy (EDS). Pore distance, interpore distance, anodization film thickness, and solid fraction were measured with a Field Emission Scanning Electron Microscope (FESEM). For anti-icing, hydrophobic surfaces were anodized with oxalic acid, phosphoric acid, or chromic acid solution. The sample anodized in oxalic acid had the lowest solid fraction. It had the highest contact angle for water droplets and the lowest contact hysteresis angle. The anti-icing contact angle showed a tendency to decrease for specimens in all solutions.

Morphogenetic Behavior of Tropical Marine Yeast Yarrowia lipolytica in Response to Hydrophobic Substrates

  • Zinjarde, Smita S.;Kale, Bhagyashree V.;Vishwasrao, Paresh V.;Kumar, Ameeta R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1522-1528
    • /
    • 2008
  • The morphogenetic behavior of a tropical marine Yarrowia lipolytica strain on hydrophobic substrates was studied. Media containing coconut oil or palm kernel oil (rich in lauric and myristic acids) prepared in distilled water or seawater at a neutral pH supported 95% of the cells to undergo a transition from the yeast form to the mycelium form. With potassium laurate, 51 % of the cells were in the mycelium form, whereas with myristate, 32% were in the mycelium form. However, combinations of these two fatty acids in proportions that are present in coconut oil or palm kernel oil enhanced the mycelium formation to 65%. The culture also produced extracellular lipases during the morphogenetic change. The yeast cells were found to attach to the large droplets of the hydrophobic substrates during the transition, while the mycelia were associated with the aqueous phase. The alkane-grown yeast partitioned more efficiently in the hydrophobic phases when compared with the coconut oil-grown mycelia. A fatty acid analysis of the mycelial form revealed the presence of lauric acid in addition to the long-chain saturated and unsaturated fatty acids observed in the yeast form. The mycelia underwent a rapid transition to the yeast form with n-dodecane, a medium-chain aliphatic hydrocarbon. Thus, the fungus displayed a differential behavior towards the two types of saturated hydrophobic substrates.

A Study on Natural Dyeing(2) - Dyeing of modified cotton fabric with Amur cork tree - (천연염색에 관한 연구(2) - 개질 면에 대한 황벽염색 -)

  • 김혜인;박수민
    • Textile Coloration and Finishing
    • /
    • v.13 no.3
    • /
    • pp.172-179
    • /
    • 2001
  • In order to improve dye uptime and wash fastness on dyeing of cotton fabrics with Amur cork tree, twitter ionic groups, acid groups, hydrophobic groups or cross linkage were introduced into cotton fabrics. Results obtained were as follows, 1 The optimum modification of cotton fabrics was carbosy methylation in the water solution containing 15% sodium chloroacetate and 15% sodium hydroxide and then introducing hydrophobic groups by treating in the solution containing $30m\ell$ DMSO and $3m\ell$ 2,4-TDI 2. Numbers of carbon, diisocyanate group than monoisocyanate group and aromatic compound than aliphatic compound in introduced hydrophobic groups were effective. 3. The dye uptake and wash fastness wore enhanced significantly by treating only with 2,4-TDI. 4. The wash fastness seems to correlate to the degree of swelling of the fabric during washing and also depend on the Interaction between dyes and acid groups as well as hydrophobic groups.

  • PDF

Variation of dissolved organic matter in 2nd treated sewage water by Al(III) coagulant (Al(III) 응집제에 의한 하수처리수 중의 유기물 성상 변화)

  • Kim, Jungsun;Han, Seungwoo;Kim, Suhyun;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • Control degree and property changes of dissolved organic matter (DOM) were conducted by coagulation of chemical treatment for 2 sewage treatment plants with different technical methods. As the result, SUVA value of the second treated water (supernatant of the second settling pond after biological treatment) was increased and DOC was reduced in comparison with supplied raw water. And, SUVA value and DOC were reduced by coagulation after coagulation treatment of the second treated water. Properties of dissolved organic matter for 2 sewage treatment plants's DOC were divided. As the result, there was lots of hydrophilic component with hydrophilicity in case of plant A. In case of the second treated water, Plant A showed fulvic acid with little molecular weight was reduced among the hydrophobic component with hydrophobicity, but numic acide with lots of molecular weight was increased. However, in case of plant B, both fulvic acid with little molecular weight and humic acid with lots of molecular weight were increased among the hydrophobic components with hydrophilicity. Before the operation of phosphorus facility, properties of dissolved organic matter after biodegradation with effluent water showed hydrophilic components were reduced and hydrophobic components were increased. However, after coagulation treatment of the second treated water, hydrophilic components and hydrophobic components were outstandingly decreased or increased. During the biodegradation after coagulation treatment, hydrophilic components were significantly decreased and hydrophobic components were increased.

Studies on Silk Fibroin Membranes(II) -Adsorption of Acid Dyes in Silk Fibroin Memberane- (Silk Fibroin 막에 관한 연구 (II) -Silk Fibroin 막에 대한 산성염료의 흡착-)

  • 최해욱;박수민;김경환
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.60-66
    • /
    • 1994
  • With the view of studying on the dual adsorption mechanism of acid dyes in connection with the structural difference of silk fibroin, silk fiber and silk fibroin memberane were used for equilibrium dyeing at $60^{\circ}C$, $70^{\circ}C$, $80^{\circ}C$ and pH 3.2, pH 5.0. The dyes used were C.I.Acid Orange 7 and C.I.Acid Red 88 introduced aromatic hydrocabon into Acid Orange 7. From the adsorption isotherm experiment, the total uptake of dyes can be described by Langmuir sorption and Nernst partition. Nernst partition. Nernst partition coefficient $K_1$ decrease of crystalline regions and orientation. The saturation value S of Acid Red 88 were large than total amino group contents and it was attributed it hydrophobic bond. On the other hand, the standard afficity and enthalpy were increased with the in crease of hydrophobic part of dyes. Both $k_1$ and $K_2$ were decreased with the increase of pH, but $k_2$ were more effected than $K_1$.

  • PDF