• Title/Summary/Keyword: hydrophilic properties

Search Result 506, Processing Time 0.024 seconds

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

Preparation of UV-Curable Hydrophilic Coating Films Using Colloidal Silica (콜로이드 실리카를 이용한 UV 경화형 친수성 코팅 도막 제조)

  • Yang, Jun Ho;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.754-761
    • /
    • 2017
  • UV-curable hydrophilic coating solutions were prepared by mixing colloidal silica dispersed in alcohol with an acrylic monomer, pentaerythritol triacrylate (PETA). Hydrophilic coating films were also prepared by spin coating the hydrophilic coating solutions on PC substrates and UV curing for 10 minutes subsequently. The effect of the amount of colloidal silica in the coating solutions, which was varied from 10 g to 50 g, was investigated on the hydrophilic properties of UV-cured coating films. The results showed that the amount of colloidal silica had a great influence on the hydrophilic properties of UV-cured coating films and the coating film prepared with 30 g of colloidal silica showed a lowest contact angle of $37^{\circ}$ and an excellent pencil hardness of H.

The Synthesis of One-step Type Hydrophilic Non-porous Polyurethane Resin and the Physical Property of its Coated Fabric for the Garment (One-step형 친수무공형 폴리우레탄 수지 합성과 코팅 처리한 의류용 직물의 물성)

  • Yang, Sung-Yong;Kim, Hyun-Ah;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • This study surveyed on the synthesis of one-step type hydrophilic non-porous PU resin and the physical property of the coated fabric for the garment. Three kinds of chain extender such as MEG, 1,4-BD and NPG were used for the preparation of one-step type hydrophilic non-porous PU resin in order to examine the effect of chain extender on the physical properties of PU-coated fabric. And the effects of isocyanate on the physical properties of PU coated fabric were surveyed by mixing with various TDI and MDI ratios. In addition, the physical properties of the coated fabric treated with one-step type hydrophilic non-porous PU resin were examined according to the pre-treatment conditions such as cire finishing. Finally, the washing durability of the coated fabrics was assessed. The coated fabrics treated with PU resin synthesized with PEG1000, MEG and TDI/MDI (6/4) showed the best physical properties. Considering the pre-treatment conditions, best performance of hydraulic pressure, water vapor permeability, and water repellency were obtained with top roller rotation ratio of 150% under 50 ton pressure at $170^{\circ}C$.

Effect of Polyethylene Glycol Molecular Weight and NCO Index on Properties of the Hydrophilic Reactive Hotmelt Polyurethane Adhesives (Polyethylene Glycol의 분자량 및 NCO index의 변화에 따른 Hydrophilic Reactive Hotmelt Polyurethane의 물성 변화)

  • Han, Young Chul;Kim, Dack Han;Oh, Kyung Seok;Shin, Hyeon Jeong;Yang, Jeong Han;Jeong, Han Mo
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.90-97
    • /
    • 2018
  • Hydrophilic reactive hot-melt polyurethane adhesive(HRHA) using a hydrophilic polyol having different molecular weight and NCO index was synthesized. This HRHA was synthesized using Polyethylene glycol(PEG) as a hydrophilic polyol, Polypropylene glycol(PPG) and Polycaprolactone diol(PCL) as hydrophobic polyols, and Methylene diphenyl diisocyanate(MDI) as an isocyanate. The changes in IR spectrum, viscosity and thermal properties of HRHA with different PEG molecular weights and NCO index were investigated, and the tensile strength and elongation of the HRHA casting film and the peel strength, moisture permeability and water pressure of the HRHA coated fabric were confirmed. In this experiment, as the molecular weight of PEG and NCO index increased, the adhesive strength, tensile strength, elongation and moisture permeability was increased but viscosity and Tg was decreased.

Enhanced Hydrophilic Property of TiO2 Thin Film Deposited on Glass Etched with O2 Plasma

  • Kim, Hwa-Min;Seo, Sung Bo;Kim, Dong Young;Bae, Kang;Sohn, Sun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.152-155
    • /
    • 2013
  • $TiO_2$ films were deposited on glass substrates with and without $O_2$ plasma etching by using the RF-magnetron sputtering method. We focused on the effect of surface structure on the photoinduced hydrophilic properties of $TiO_2$ films, fabricated on different surface conditions according to the presence or absence of the $O_2$ plasma treatment on glass substrates. The wettability and photoinduced hydrophilic properties of the $TiO_2$ films were investigated according to the changes in water contact angles under UV light irradiations with a very low intensity of 0.1 $mW/cm^2$. The photoinduced hydrophilic properties on the $TiO_2$ formed above the plasma treated glass were also superior to those on the $TiO_2$ formed above the bare glass. This enhanced $TiO_2$ film has been used practically for self cleaning and anti-fogging glasses.

Preparation and Characterization of Hydrophilic TiO2 Film

  • Park, Jin-Koo;Kim, Ho-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.745-748
    • /
    • 2002
  • A novel titania sol for the preparation of hydrophilic TiO2 films was synthesized from TiCl4. TiO2 films were prepared by spraying the sol on glass substrates and the hydrophilic properties of the films were invest igated with illumination of UV light. The contact angle of a water drop on the films decreased to less than 7˚, which indicates the excellent hydrophilicity of the TiO2 films.

Hydrophilic surface formation of polumer treated by ion assisted reaction and its applications (이온빔보조 반응법을 이용한 고분자 표면의 친수성처리와 그 응용)

  • Cho, J.;Choi, S. C.;Yun, K.H.;Koh, S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.262-268
    • /
    • 1999
  • Polycarbonate (PC) and Polymethylmethacrylate (PMMA) surface was modified by ion assisted reaction (IAR) technique to obtain the hydrophilic functional groups and improve the wettability. In conditions of ion assisted reaction, ion beam energy was changed from 500 to 1500eV, and ion dose and oxygen gas blown rate were fixed $1\times10^{16}$ ions/$\textrm{cm}^2$ and 4ml/min, respectively. Wetting angle of water on PC and PMMA surface modified by $Ar^+$ ion without blowing oxygen at 4ml/mon showed $5^{\circ}$ and $10^{\circ}$. Changes of wetting angle with oxygen gas and $Ar^+$ ion irradiation were explained by considering formation of hydrophilic group due to a reaction between irradiated polymer chain by energetic ion irradiation and blown oxygen gas. X-ray photoelectron spectroscopy analysis shows that hydrophilic groups such as -C-O, -(C=O)- and -(C=O)-O- are formed on the surface of polymer by chemical interaction. The polymer surface modification using ion assisted reaction only changed the surface physical properties and sept the bulk properties. In comparison with other modification methods, the surface modification by IAR treatment was chemically stable and enhanced the adhesion between metal and polymer surface. The applications of various kinds of polymer surface modification methods, metal and polymer surface. The applications of various kinds of polymer surface modification could be appled to the new materials about hydrophilic surface properties by IAR treatment. The adhesion between metal film and polymer measured by Scotch tape test whether the hydrophilic surfaces could improve the adhesion strength or not.

  • PDF

Hydrophilic/Hydrophobic Conversion of $TiO_2$ Films by Reactive Magnetron Sputtering (Reactive Magnetron Sputtering법으로 제조된 $TiO_2$의 친수성/소수성 변환 특성)

  • 이영철;박용환;안재환;고경현
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1211-1216
    • /
    • 1999
  • TiO2 thin films were prepared by reactive magnetron sputtering on glass substrate and subjected into investigation about their hydrophilic properties. Varing Ar/O2 ration and post annealing at 50$0^{\circ}C$ for 12h anatase and rutile phases of TiO2 films were obtained. Hydrophilic properties were evaluated by determination of contact angle of water droplet on TiO2 surface. On as-annealed TiO2 films water droplet spreaded widely with ~0$^{\circ}$contact angle. Sonication(60 Hz, 28kHz 40kHz) and following dark room treatments turned these hydrophilic TiO2 films into hydrophobic state. All of hydrophobic films were converted recersibly into their original state after UV illumination. Hydrophobic states of anatase films were saturated after sonication and remain same during dark room treatment. But it was found that the conversion into hydrophobic state of rutile films progressed. further after sonication. Therefore it was concluded that Ti3+/Ti+4 ratio is the key to determine hydrophilicity of TiO2 surface so that different surface structure of polymorphs could lead to unique characteristics.

  • PDF

Emulsion Polymerization of Co-polymers Having Both Hydrophilic and Hydrophobic Side Chains and Their Adhesion Properties

  • Takahashi, S.;Shibamiya, N.;Kasemura, T.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • We have studied on the surface and adhesion properties for acrylic terpolymers, having both hydrophobic and hydrophilic side chains, synthesized via solution polymerization. In order to develop a waterborne material. we tried to synthesize these terpolymers via emulsion polymerization. The polymeric emulsion synthesized was mainly composed of methyl methacrylate (MMA), methoxy-polyethyleneglycol methacrylate (MPEGMA) having hydrophilic side chains and methoxypolypropyleneglycol methacrylate (MPEGMA) having hydrophobic side chains. The viscosities of this series increased with an increase in the content of the co-monomer such as MPEGMA and (MPEGMA). This behavior resulted in the increase in the diameter and heterogeneity of the emulsion particle via AFM observation. Furthermore. the tensile adhesion strength and 90-degree peel strength of the adhesive of these polymeric emulsions were measured. In the case of polymeric emulsion composed of the same content of both hydrophilic and hydrophobic component, the adhesion property showed the highest value. However, since the adhesion properties as a practical applicable adhesive were poor, some improvements were required. When the composition above was modified with butyl acrylate (BA), the improvement effect on adhesion strength was accepted. In particular, 90-degree peel strength increased up to a maximum of 400% of the original value.

  • PDF

THERMO-SENSITIVITY OF N-VINYL PYRROLODONE-CO-2- HYDROXYETHYLMETHACRYLATE HYDROGELS

  • Irina Nam;Park, Jung-Ki;Lee, Seong-Nam;Sung, Shi-Joon;Min, Yong-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.9-15
    • /
    • 2004
  • The copolymerization of HEMA with different hydrophilic and hydrophobic co-monomers allows for the manipulation of their intrinsic properties. 2-Hydroxyethylmethacrylate (HEMA)-based hydrogels thus are of great interest due to their outstanding physico-mechanical properties and chemical stability. The idea to use HEMA in order to create thermo-sensitive polymers was based on our assumption that thermal-sensitivity comes from a suitable hydrophilic-hydrophobic balance of macromolecules. In this work we have chosen N-vinyl pyrrolidone as a hydrophilic co-monomer with the relatively hydrophobic HEMA due to its good polymerizing properties as well as its non-toxicity in a polymer state and deserved recognition as a biocompatible material. As a result, copolymerization of NVP and HEMA was successful in obtaining new types of thermo-sensitive polymers composed of hydrophilic and hydrophobic monomers.

  • PDF