• Title/Summary/Keyword: hydrophilic modification

Search Result 155, Processing Time 0.023 seconds

Preparation and Characterization of Polyvinylidene Fluoride by Irradiating Electron Beam (전자빔 조사를 이용한 Polyvinylidene Fluoride의 제조 및 특성)

  • Choi, Yong-Jin;Kim, Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • For the purpose of introducing hydrophilic function to pristine PVDF, pristine PVDF was modified under atmosphere and aqueous vapor by irradiating electron beam (EB). EB dose was varied from 0 to 125 K Gray, respectively. Their changes of chemical composition /structure were observed and evaluated by FT-IR, EDS and DSC. Also, their surface behaviors were evaluated by contact angle. In FT-IR study, it was confirmed that hydroxyl functions were introduced to pristine PVDF. In EDS analysis, mole ratio of F (fluoride) was almost constant (about 33%) in spite of increasing EB dose, meaning that hydroxyl function was introduced via dehydrozenation, not via deflurodination. In DSC study, $T_g$ increased with increasing EB dose, which was reconfirmed that hydroxyl function was introduced via dehydrozenation. $T_m$ increased with increasing EB dose, inferring that the increase in EB dose led to more outbreak of hydroxyl function which led to more enhanced hydrogen bond. In the result of contact angle, pristine PVDF film was $62^{\circ}$ and 125 K Gray-irradiated PVDF film was even $13^{\circ}$. All results showed that pristine PVDF was successfully changed to hydrophilic PVDF.

Fabrication of Reverse Osmosis Membrane with Enhanced Boron Rejection Using Surface Modification (표면개질을 이용하여 붕소 제거율이 향상된 역삼투막의 제조)

  • Lee, Deok-Ro;Kim, Jong Hak;Kwon, Sei;Lee, Hye-Jin;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2018
  • With the rapid increase in seawater desalination, the importance of boron rejection is rising. This study was conducted to investigate the effect of hydrophilic compounds on surface modification to maximize water flux and increase boron rejection. First, polyamide active layer was fabricated by interfacial polymerization of polysulfone ultrafiltration membrane with M-phenylenediamine (MPD) and trimesoyl chloride (TMC) to obtain Control polyamide membrane. Next, D-gluconic acid (DGCA) and D-gluconic acid sodium salt (DGCA-Na) were synthesized with glutaraldehyde (GA) and hydrochloric acid (HCl) by modifying the surface of Control polyamide membrane. XPS analysis was carried out for the surface analysis of the synthesized membrane, and it was confirmed that the reaction of surface with DGCA and DGCA-Na compounds was performed. Also, FE-SEM and AFM analysis were performed for morphology measurement, and polyamide active layer formation and surface roughness were confirmed. In the case of water flux, the membrane fabricated by the surface modification had a value of 10 GFD or less. However, the boron rejection of the membranes synthesized with DGCA and DGCA-Na compounds were 94.38% and 94.64%, respectively, which were 12.03 %p and 12.29 %p larger than the Control polyamide membrane, respectively.

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Effects of Surface Modification of the Membrane in the Ultrafiltration of Waste Water

  • Cho Dong Lyun;Kim Sung-Hyun;Huh Yang Il;Kim Doman;Cho Sung Yong;Kim Byung-Hoon
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.553-558
    • /
    • 2004
  • An ultrafiltration membrane (polyethersulfone, PM 10) was surface-modified by treating it with low-tem­perature plasmas of oxygen, acrylic acid (AA), acetylene, diaminocyolohexane (DACH), and hexamethyldisiloxane (HMDSO). The effects that these modifications have on the filtration efficiency of a membrane in waste water treat­ment were investigated. The oxygen, AA, and DACH plasma-treated membranes became more hydrophilic. The water contact angles ranged from < $10^{\circ}\;to\;55^{\circ}$ depending on the type of plasma and the treatment conditions. The oxygen plasma-treated membranes displayed a higher initial flux $(312-429\%),$ but lower rejection $(6-91\%),$ than did an untreated membrane. The AA plasma-treated membranes displayed lower or higher initial flux $(42-156\%),$ depending upon the treatment conditions, but higher rejection $(224-295\%)$ in all cases. The DACH plasma-treated membranes displayed lower initial flux. All of them, especially the AA plasma-treated membrane, displayed improved fouling resistance with either a slower or no flux decline. Acetylene and HMDSO plasma-treated membranes became more hydrophobic and displayed both lower initial flux and lower fouling resistance.

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

The Effect of Electron Irradiation on the Surface Modification of Polycarbonate and Adhesion of Cr Thin Films (전자 빔 조사를 통한 폴리카보네이트 표면개질 및 Cr박막 접착력 증대 효과)

  • Jeong, C.W.;Sung, Y.J.;Lim, S.Y.;Shin, G.W.;Shin, C.H.;Kim, S.K.;Kim, J.H.;You, Y.Z.;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The enhancement of adhesion for Cr film on polycarbonate (PC) substrate with electron irradiation treatment was considered. The electron treatment changes the contact angle of the PC substrates. As increase the electron energy from 300 eV to 900 eV, the contact angle decreases from $90^{\circ}$ to $60^{\circ}C$. It is supposed that electron treatment changes the chemical property of PC substrate into hydrophilic one. The micro surface roughness was also affected by electron treatment. The PC substrates irradiated with intense electron beam of 900 eV show the rougher surface than those of other PC substrates. Cr thin films deposited on the PC substrate treated with electron irradiation at 900 eV show the higher adhesion than that of the Cr thin film deposited untreated bare PC substrates.

Superhydrophilic Surface Modification of Polyvinylidene Fluoride by Low Energy and High Flux ion Beam Irradiation (저에너지 고출력 이온빔을 이용한 polyvinylidene fluoride 표면의 초친수성화)

  • Park Jong-Yong;Jung Yeon-Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.382-387
    • /
    • 2005
  • Polyvinylidene fluoride (PVDF) surface was irradiated and became superhydrophilic by low energy (180 eV) and high flux $(\~10^{15}/cm{\cdot}s)$ ion beam. As an ion source, a closed electron Hall drift thruster of $\phi=70mm$ outer channel size without grid was adopted. Ar, $O_2$ and $N_2O$ were used for source gases. When $N_2O^+$ and $O_2^+$ reactive gas ion beam were irradiated with the ion fluence of $5\times10^{15}/cm^2$, the wetting angle for deionized water was drastically dropped from $61^{\circ}\;to\;4^{\circ}\;and\;2^{\circ}$, respectively. Surface energy was also increased up to from 44 mN/m to 81 mN/m. Change of chemical component in PVDF surface was analyzed by x-ray photoelectron spectroscopy. Such a great increase of the surface energy was intimately related with the increase of hydrophilic group component in reactive ion irradiated PVDF surfaces. By using an atomic force microscopy, the root-mean-square of surface roughness of ion irradiated PVDF was not much altered compared to that of pristine PVDF.

Chemical Modification of Japanese Cedar with 2-Methacryloyloxyethyl Isocyanate (2-메타크릴로일옥시에틸 이소시아네이트에 의한 삼나무재의 화학처리)

  • Han, Gyu-Seong;Setoyama, Kouichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • This study was carried out to introduce functional groups onto wood by reacting with 2-methacryloyloxyethyl isocyanate(MOI). The effects of the catalyst and the reaction conditions(temperature and time) on the treatment were investigated. The evidence of bonding between wood and MOI were examined by infrared(IR) spectroscopy. The change in surface characteristics of MOI treated wood was examined by water contact angle measurement and X-ray photoelectron spectroscopy(XPS). Wood reacted quickly with MOI in the presence of di-n-butiltin dilaurate catalyst. Especially, the increase in weight percent gain(WPG) with increasing in reaction time was remarkable at the reaction temperature of over $50^{\circ}C$. The IR spectrum of wood reacted with MOI showed a strong urethane absorption(1715 $cm^{-1}$) but no isocyanate(2235 $cm^{-1}$) absorption. It also showed a sharp olefinic C=C double bond absorption at 1635 $cm^{-1}$. This means that an introduced methacrylate group becomes the starting point of further graft copolymerization with another vinyl monomers. The wood modified with MOI showed a gradual increase in contact angle with increasing in WPG, which means that the hydrophilic wood surface become quite hydrophobic. Also, it was cleared that most parts of the wood surface were modified with MOI by XPS analysis.

  • PDF

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF

Surface Modification and Enzymatic Degradation of Microbial Polyesters by Plasma Treatments (플라즈마를 이용한 미생물합성 폴리에스테르의 표면개질과 효소분해성)

  • Kim, Jun;Lee, Won-Ki;Ryou, Jin-Ho;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.19-25
    • /
    • 2006
  • Since the enzymatic degradation of microbial poly(hydroxylalkanoate)s (PHAs), such as poly[(R)-3-hydroxybutyrate] and poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] initially occurs by a surface erosion process, their degradation behaviors can be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma modification technique was applied to change the surface property of microbial PHAs. The surface hydrophobic and hydrophilic properties of PHA films were introduced by $CF_3H$ and $O_2$ plasma exposures, respectively. The enzymatic degradation was carried out at $37^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. The results showed that the significant retardation of initial enzymatic erosion of $CF_3H$ plasma-treated PHAs was observed due to the hydrophobicity and the enzyme inactivity of the fluorinated surface layers while the erosion rate of $O_2$ plasma-treated PHAs was not accelerated.

  • PDF