• Title/Summary/Keyword: hydroperoxide lyase

Search Result 3, Processing Time 0.016 seconds

Characteristics of Hydroperoxide Lyase and Lipoxygenase Activity in Cucumber (Cucumis sativus) Fruit (오이(Cucumis sativus)에 함유된 Hydroperoxide Lyase와 Lipoxygenase 효소 활성 및 특성)

  • Jang, Mi-Jin;Cho, Il-Young;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.314-319
    • /
    • 1997
  • The objectives of this study were to examine the effect of storage time, temperature, pH, and NaCl concentration on hydroperoxide lyase and lipoxygenase activities, and to establish important informations to the production of typical cucumber flavor. Conditions affecting lipoxygenase and hydroperoxide lyase would be important for cucumber flavor production. Maximum activity was observed at pH 5.0 for hydroperoxide lyase and pH 5.5 for lipoxygenase. Both enzymes were relatively stable at $40\;to\;50^{\circ}C$ for 6days storage time. Maximum activity of both enzymes was observed with 0.2 M NaCl at pH 5.0. Activities were stimulated with concentrations of NaCl from 0.05 to 0.2 M. Hydroperoxide lyase and lipoxygenase activities were decreased at concentration of NaCl greater than 0.2 M.

  • PDF

Optimization for Effective Bioproduction of Natural (-)-1-Octen-3-ol by Lipoxygenase and Hydroperoxide Lyase from Agaricus bisporus (Agaricus bisporus의 Lipoxygenase와 Hydroperoxide Lyase를 이용한 천연 (-)-1-Octen-3-o1 생산 공정의 최적화)

  • Kim, Kyoung-Ju;Kim, Yong-Hwi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.899-903
    • /
    • 2005
  • One of the most important volatile aroma compounds responsible for mushroom flavor is 1-octen-3-ol. To meet the demand for natural mushroom flavor, a study was needed for the production of natural chiral specific (-)-1-octen-3-ol that has higher flavor intensity than synthetic chiral mixtures of (+), and (-)-1-octen-3-ol. The biosynthesis of (-)-1-octen-3-ol was achieved by an aerobic oxidation using lipoxygenase (LOX) and hydroperoxide lyase (HPOL) isolated from commercially available mushrooms in Korean market. Safflower oil from Uiseong, Gyeongsangbuk-do, that contains $\geq75\%$ of linoleic acid, was hydrolyzed using lipase. The recovered linoleic acid was biotransformed to stereo-specific 10-hydroperoxy linoleic acid by LOX. 10- hydroperoxy linoleic acid was further cleaved to (-)-1-octen-3-ol by HPOL. A commercial bioprocess for the production of (-)-1-octen-3-ol was developed using a 5-liter jar fermenter with fruiting bodies of Agaricus bisporus harvested from Buyeo, Chungcheongnam-do. The maximum production of (-)-1-octen-3-o1 was achieved at $4^{\circ}C$, pH 6.5 and 800 rpm yielding 748 mg/kg of mushroom.

Biosynthesis of (R)-(-)-1-Octen-3-ol in Recombinant Saccharomyces cerevisiae with Lipoxygenase-1 and Hydroperoxide Lyase Genes from Tricholoma matsutake

  • Lee, Nan-Yeong;Choi, Doo-Ho;Kim, Mi-Gyeong;Jeong, Min-Ji;Kwon, Hae-Jun;Kim, Dong-Hyun;Kim, Young-Guk;Luccio, Eric di;Arioka, Manabu;Yoon, Hyeok-Jun;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.296-305
    • /
    • 2020
  • Tricholoma matsutake is an ectomycorrhizal fungus, related with the host of Pinus densiflora. Most of studies on T. matsutake have focused on mycelial growth, genes and genomics, phylogenetics, symbiosis, and immune activity of this strain. T. matsutake is known for its unique fragrance in Eastern Asia. The most major component of its scent is (R)-(-)-1-octen-3-ol and is biosynthesized from the substrate linoleic acid by the sequential reaction of lipoxygenase and peroxide lyase. Here, we report for the first time the biosynthesis of (R)-(-)-1-octen-3-ol of T. matsutake using the yeast Saccharomyces cerevisiae as a host. In this study, cDNA genes correlated with these reactions were cloned from T. matsutake, and expression studies of theses genes were carried out in the yeast Saccharomyces cerevisiae. The product of these genes expression study was carried out with Western blotting. The biosynthesis of (R)-(-)-1-octen-3-ol of T. matsutake in recombinant Saccharomyces cerevisiae was subsequently identified with GC-MS chromatography analysis. The biosynthesis of (R)-(-)-1-octen-3-ol with S. cerevisiae represents a significant step forward.