• Title/Summary/Keyword: hydromagnetics

Search Result 2, Processing Time 0.013 seconds

VARIABILITY OF ACTIVE GALACTIC NUCLEI DUE TO FIELD-ACCRETING MODES

  • PARK SEOK JAE
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.77-80
    • /
    • 1994
  • Variability of the emission-line spectra of active galactic nuclei is now a well-known phenomenon. This remains to be fully explained by a theoretical model of the central engine in an active galactic nucleus. Since the magnetic field lines are anchored on the accreting matter, they continuously fall on the event horizon of the central supermassive black hole and increase the net field strength of the hole magnetosphere. The field strength, however, cannot increase without an upper limit and, therefore, it will be decreased by some unknown processes. In this paper we discuss that these increasing and decreasing modes can be repeated periodically and explain the variability of power output, therefore, variability of active galactic nuclei.

  • PDF

A MULTI-DIMENSIONAL MAGNETOHYDRODYNAMIC CODE IN CYLINDRICAL GEOMETRY

  • Ryu, Dong-Su;Yun, Hong-Sik;Choe, Seung-Urn
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.223-243
    • /
    • 1995
  • We describe the implementation of a multi-dimensional numerical code to solve the equations for idea! magnetohydrodynamics (MHD) in cylindrical geometry. It is based on an explicit finite difference scheme on an Eulerian grid, called the Total Variation Diminishing (TVD) scheme, which is a second-order-accurate extension of the Roe-type upwind scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. Curvature and source terms are included in a way to insure the formal accuracy of the code to be second order. The constraint of a divergence-free magnetic field is enforced exactly by adding a correction, which involves solving a Poisson equation. The Fourier Analysis and Cyclic Reduction (FACR) method is employed to solve it. Results from a set of tests show that the code handles flows in cylindrical geometry successfully and resolves strong shocks within two to four computational cells. The advantages and limitations of the code are discussed.

  • PDF