• Title/Summary/Keyword: hydrolysis yield

Search Result 419, Processing Time 0.031 seconds

Modification of Pullulan Using Dextransucrase and Characterization of the Modified Pullulan. (덱스트란수크라제를 이용한 플루란의 변형 및 특성조사)

  • ;;;;;;John F. Robyt
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.264-268
    • /
    • 1998
  • Many enzymes catalyze a primary reaction and/or secondary reaction. Dextransucrase usually synthesizes dextran from sucrose as a primary reaction. The secondary reaction of dextransucrase is the transfer of glucose from sucrose to carbohydrate accepters. We have reacted dextransucrase from Leuconostoc mesenteroides B-742CB with sucrose and pullulan as an acceptor under different reaction conditions; various concentrations of pullulan, enzyme, sucrose and different pHs and temperatures of reaction digests. The yield of modified pullulan was 57%(<${\pm}$5%) of theoretical under the reaction condition of pH 5.2, temperature 28$^{\circ}C$, 0.37% of pullulan, and 0.l U/$m\ell$ of dextransucrase. Modified products were more resistant against the hydrolysis of pullulanase and endo-dextranase than those of native pullulan. The positions of glucose substitution in the modified products were determined by methylation followed by acid hydrolysis and analyzed by TLC. The products were modified by the addition of glucose to the position of C3, C4, C6 free hydroxyl group of glucose residues in the pullulan.

  • PDF

Probing the Critical Residues for Intramolecular Fructosyl Transfer Reaction of a Levan Fructotransferase

  • Moon, Keum-Ok;Choi, Kyoung-Hwa;Kang, Ho-Young;Oh, Jeong-Il;Jang, Se-Bok;Park, Cheon-Seok;Lee, Jong-Hoon;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1064-1069
    • /
    • 2008
  • Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose-2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.

Bioethanol Production from Seaweed Undaria pinnatifida Using Various Yeasts by Separate Hydrolysis and Fermentation (SHF) (갈조류 미역(Undaria pinnatifida)의 분리당화발효와 다양한 효모를 이용한 바이오에탄올의 생산)

  • Nguyen, Trung Hau;Ra, Chae Hun;Park, Mi-Ra;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.529-534
    • /
    • 2016
  • Bioethanol was produced using the separate hydrolysis and fermentation (SHF) method with macroalgal polysaccharides from the seaweed, Undaria pinnatifida as biomass. This study focused on the pretreatment, enzymatic saccharification, and fermentation of yeasts in co-culture. Ethanol fermentation with 14.5% (w/v) seaweed hydrolysate was performed using the yeasts, Saccharomyces cerevisiae KCTC 1126 alone, Pichia angophorae KCTC 17574 alone, and their co-cultures with the yeasts either adapted to mannitol or not. Among the combinations, the co-culture of non-adapted S. cerevisiae and P. angophorae adapted to mannitol showed high bioethanol production of 12.2 g/l and an ethanol yield ($Y_{EtOH}$) of 0.41. Co-culture in the SSF process was employed in this study, to increase the ethanol yields of 35.2% and reduction of 33.3% in fermentation time. These results provide suitable information on ethanol fermentation with marine seaweeds for bioenergy production.

Synthesis of Surface Active Properties of Destructible Surfactants with 1,3-Dioxane (1,3-디옥산을 함유한 분해성 계면활성제의 합성의 및 계면 특성)

  • Kim, Chi-Hoi;Roh, Yun-Chan;Kim, Yu-Ok;Nam, Kie-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.61-71
    • /
    • 1996
  • In acid-catalyzed acetal cyclization of long aliphatic aldehydes($R=n-C_7H_{15}$ ; $n-C_9H_{19}$ ; $n-C_{11}H_{23}$) with 1,1,1-tris(hydroxymethyl)propane, 2-alkyl-5-hydroxymethyl-5-ethyl-1,3-dioxanes were obtained. The final products, sodium 2-alkyl-5-(sulfonatedpropylethermethyl)-5-ethyl-1,3-propanesultion in the presence of sodium hydride. These compounds were a new group of destructible surfactants which were readily hydrolyzed and oxidized in natural water reservoirs. Physical properties of these new compounds involved some surface properties such as Krafft point(Kp), critical micelle concentration(cmc), surface tension of aqueous solutions near cmc(${\gamma}_{min}$), foaming power, emulsion power and hydrolysis properties were determined. The destructible surfactants containing 1,3-dioxane ring were synthesized to about $85{\pm}5.5%$ yield. The cmc values of the compounds by ring method were assumed to $0.5{\sim}5.0{\times}10^{-3}mol/L$ range and surface tensions at cmc were $29.5{\sim}33.0dyne/cm$ respectively at $25^{\circ}C$. The foaming power and foam stability were $170{\sim}230mm$ and $52{\sim}135mm$ respectively at $1{\times}10^{-2}mol/L$, foam was occurred rarely below $1{\times}10^{-3}mol/L$. The emulsion property of liquid paraffin was better than that of soybean oil. For hydrolysis property with ph and time, these compounds were decomposed within about 200minutes at $ph1{\sim}2$. Hopefully these compounds are expected to be a good O/W emulsifier that have decomposability in acid and may be used in the process which do not need foaming.

Cloning and Characterization of Zebrafish Microsomal Epoxide Hydrolase Based on Bioinformatics (생물정보학을 이용한 Zebrafish Microsomal Epoxide Hydrolase 클로닝 및 특성연구)

  • Lee Eun-Yeol;Kim Hee-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • A gene encoding for a putative microsomal epoxide hydrolase (mEH) of a zebrafish, Danio rerio, was cloned and characterized. The putative mEH protein of D. rerio exhibited sequence similarity with mammalian mEH and some other bacterial EHs. A structural model for the putative mEH was constructed using homology modeling based on the crystallographic templates, 1 qo7 and 1 ehy. The catalytic triad consisting of $Asp^{233}$, $Glu^{413}$, and $His^{440}$ was identified, and the characteristic features such as two tyrosine residues and oxyanion hole were found to be highly conserved. Based on bioinformatic analysis together with EH activity assay, the putative protein was annotated as mEH of D. rerio. Enantiopure styrene oxide with enantiopurity of 99%ee and yield of 33.5% was obtained from racemic styrene oxide by the enantioselective hydrolysis activity of recombinant mEH of D. rerio for 45 min.

Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis

  • Ra, Chae Hun;Jung, Jang Hyun;Sunwoo, In Young;Kang, Chang Han;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.856-862
    • /
    • 2015
  • The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m2/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

Extraction and Concentration Method of Red Ginseng by Vacuum Impulse System (진공력적방식(Vacuum Impulse Stem)을 이용한 홍삼의 추출 방법)

  • Kim Cheon-Suk;Chang Gap-Moon
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.88-92
    • /
    • 1999
  • Hydrolysis properties of ginseng saponins in processing of extraction with vacuum impulse system extraction method were compared with multi-stage extraction methods. Crude saponin content of the extract produced by vacuum impulse system extraction method was $11.5\%,$ compared with multi-stage extraction method (about $8.13\%).$ Also the yield of the extract increased about $6.7\%.$ The flavor and aroma of ginseng extract with vacuum impulse system extraction method are stronger than multi-stage extraction methods and people have a tendency to like more. The color was similar to existing extraction items and the liquidity ratio was high. Vacuum impulse system extraction method could save human resources because of short extraction time and automatic operation of processing. With HPLC pattern, We could ascertain the truth that hydrolysis properties of ginseng saponin was restrained in the extraction processing, vacuum impulse system extraction method.

  • PDF

Processings and Quality Characteristics of Flavoring Substance from the Short-neck Clam, Tapes philippinarum (바지락을 이용한 풍미소재의 가공 및 품질특성)

  • MOON Jeong-Ho;KIM Jong-Tae;KANG Su-Tae;HUR Jong-Hwa;OH Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.210-219
    • /
    • 2003
  • To develop natural flavoring substances, optimal two stage enzyme hydrolysis conditions and flavor compounds of short-neck clam (Tapes philippinarum) enzyme hydrolysates were examined. The optimal enzyme hydrolysis conditions for two stage enzyme hydrolysate (TSEH) of short-neck clam were revealed in temperature at $55^{\circ}C$ for 4 hours digestion with alcalase at the 1st stage and 4 hours digestion at $45^{\circ}C$ with exopeptidase type neutrase at the 2nd stage. In quality tests of hot-water extracts, steam extracts and 4 kinds of enzyme hydrolysates, TSEH processing method was superior to other methods in yield, nitrogen contents, organoleptic taste such as umami intensity and inhibition of off-flavor formation, and transparency of extract. Total free amino acid contents in hot-water extract, steam extract and TSEH were 1,352.1 mg/100 g, 1,174.1 mg/100 g and 2,122.4 mg/100 g, respectively, Major free amino acids in TSEH were glutamic acid, glycine, alanine, tyrosine, phenylalanine and arginine. As for nucleotides and other bases, betaine, TMAO and creatinine were principal components in TSEH. The major inorganic ions in TSEH were Na, K, P and Cl. TSEH also revealed very higher angiotensin-I converting enzyme inhibition effect $(70.7\%)$ than those of hot-water and steam extract. We conclude that TSEH from short-neck clam was more flavorable compared with the seasoning materials on the market, it could be utilized as the instant soup base and the seasoning substances for fisheries processing.

Process Development of Concentration of n-3 PUFAs from Fish Oil by Means of Lipase (리파제의 아실 체인 특이성을 이용한 물고기 기름에서 n-3 다중불포화지방산의 농축공정개발)

  • 진영서;허병기
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.90-95
    • /
    • 1998
  • Experiments on the process development for the concentration of polyunsaturated fatty acid (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil by using acyl chain specificity of Candida cylindracea lipase were performed. Five kinds of oils were hydrolyzed with Candida cylindracea lipase. Among then, Candida cylindracea lipase just had low activity on the PUFAs-rich fish oil. After the hydrolysis of fish oil, free fatty acid was removed and fatty acid components of glyceride mixtures were analyzed. When the hydrolysis was about 70%, the DHA content in the glyceride mixture was about three times more than that in the original fish oil. The EPA and stearidonic acid contents in the glyceride mixtures, however, were similar to that of the original fish oil. In this work, these results showed that the concentration process of PUFAs by using the acyl chain specificity of Candida cylindreacea lipase was effective in producing glycerides that contained a high concentration of PUFAs in good yield.

  • PDF

Development and Evaluation of the Attrition Coupled Bioreactors for Enzymatic Hydrolysis of Biomass ; Tumbling-Drum Type Bioreactor for Enzymatic Hydrolysis of Cellulose (Biomass의 고효율 효소당화에 적합한 Attrition Coupled Bioreactor 개발에 관한 연구 ; Tumbling Drum Type Bioreactor를 활용한 섬유소 당화)

  • 이용현;조구형;박진서
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.87-93
    • /
    • 1989
  • To develop high dfficiency-low energy consumption attrition coupled bioreactor for enhanced enzymatic hyerolysis of insoluble biomass, a tumbling drum type bioreactor was installed, and its efficiency was evaluated. The effects of drum structure and poerational conditions were investigated. The optimal saccharification at 3L drum was obtained at 8 baffled drum, drum diameter to baffle height ratio of 1:0.05, 100rpm, and addition of 600g of 3mm glass bead per liter. The consumed power for rolling of drum and energy consumption for half digestion of cellulose were measured, and compared with enhanced rate and yield to predict the economic prospect of the process. The tumbling drum type bioreactor seems to have appropriated structure for industrial scale operation, and further investigation for scale-up need to be conducted.

  • PDF