• Title/Summary/Keyword: hydrolysis yield

Search Result 419, Processing Time 0.021 seconds

Studies on Triterpenoid Corticomimetics (V) - Oxidation of Presenegenin with Chromium Trioxide-Acetic Acid to Yield 11-Keto and 12-Keto Derivatives

  • Han, Byung-Hoon;Han, Yong-Nam
    • Archives of Pharmacal Research
    • /
    • v.8 no.4
    • /
    • pp.229-236
    • /
    • 1985
  • Oxidation of presenegenin dimethyl ester triacetate with chromium trioxide in acetic acid yielded two compounds, 11-ketone (IV) and 12-ketone (IV) derivatives. The latter was a main product. On mild alkaline hydrolysis, IV afforded 11-keto-presenegenin dimethyl ester (V), mp 232-$234^{\circ}$, $C_{32}H_{48}O_{8}$, whereas VI did 12-keto-presenegenin dimethyl ester 12, 27-hemiketal (VIII), mp 240-$242^{\circ}$, $C_{32}H_{50}O_{8}$.

  • PDF

Synthsis of N-Phenylcysteine

  • Lee Ge Hyeong;Park Chwang Siek;Lee Hyo Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.25-27
    • /
    • 1988
  • N-Phenylcysteine (1) was prepared as a hydrobromide in good yield from the acid hydrolysis of 4-carboxy-2-methyl-3-phenyl-${\Delta}^\;2$-thiazolinium bromide (5), which was derived from the reaction of thioacetanilide and $\alpha$ -bromoacrylic acid. The treatment of ethyl ester(6) of N-phenylcysteine with 2,2-dimethoxypropane rendered it to ethyl 2,2-dimethyl-3-phenylthiazoline-4-carboxylate (7).

The Stereospecific Synthesis of Abscisic Acid

  • Park, Oee-Sook;Lee, W.Y.;Park, J.C.
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 1986
  • A stereospecific synthesis of 3-methyl-5-(1-hydroxy-4-oxo-2,6,6-trimethyl-2-cyclohexen-1-yl)-cis, trans-2,4-pentadienoic acid (abscisic acid) from ${\alpha}-ionone$ has been investigated. Ethyl 5-(2,6,6-trimetyl-2-cyclohexen-1-yl)-trans-4-penten-2-ynoate $({\alpha},{\beta}-acetylenic\;ester)$, which was synthesized from alpha-ionone in two steps, was stereospecifically converted in good yield into ethyl 3-methyl-5-(2,6,6-trimethyl-2-cyclohexen-1-yl)-cis, trans-2, 4-pentadienoate $({\alpha}-ionylideneacetate)$ by the conjugate addition of lithium dimethylcuprate at $-78^{\circ}C$. Basic hydrolysis of the ethyl ${\alpha}-ionylideneacetate$ gave an abscisic acid precursor, 3-methyl-5-(2,6,6-trimethyl-2-cyclohexen-1-yl)-cis, trans-2,4-pentadienoic acid, which can be oxidized to yield abscisic acid.

  • PDF

Synthesis of 4-Hydroxy-2-Methyl-N-(Cyclohexyl)-2H-1, 2-Benzothiazine-3-Carboxamide-1, 1-Dioxide via 1,3-Oxazine Compounds (1, 3-Oxazine화합물로부터 4-Hydroxy-2-Methyl-N-(Cyclohexyl)-2H-1, 2-Benzothiazine-3-Carboxamide-1, 1-Dioxide 의 합성)

  • 서정진;홍유화
    • YAKHAK HOEJI
    • /
    • v.31 no.4
    • /
    • pp.219-223
    • /
    • 1987
  • 2-Cyclohexylimino-3-cyclohexyl-5-methyl-4-oxo-2H, 5H-1, 3-oxazino [5,6-C]-1, 2-benzothiazine-6,6-dioxide 2 was hydrolized in d-HCl/$CH_3$CN to give 5-methyl-3-cyclohexyl-2H, 5H-1, 3-oxazino [5, 6-C]-1, 2-benzothiazine-2, 4(3H)-dione 6, 6-dioxide 3 in 82% yield. The alkaline hydrolysis of 3 afforded to 4-hydroxy-2-methyl-N-(cyclohexyl)-2H-1, 2-benzothiazine-3-carboxamide-1, 1-dioxide 4 in 88% yield. On the other hand 3 was synthesized from 4 and ethylchloroformate on the reversed procedure.

  • PDF

Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.1-14
    • /
    • 2010
  • Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

Asymmetric resolution of racemic styrene oxide using recombinant Escherichia coli harboring epoxide hydrolase of Rhodotorula glutinis (Rhodotorula glutinis 유래의 고효율 재조합 Epoxide Hydrolase를 이용한 라세믹 Styrene Oxide의 비대칭 광학분할)

  • Park, Kyu-Deok;Choi, Sung-Hee;Kim, Hee-Sook;Lee, Eun-Yeol
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.369-374
    • /
    • 2008
  • The effects of reaction temperature and the addition of various detergents on the enantioselective hyrolysis activity of the recombinant Escherichia coli containing the epoxide hydrolase (EH) gene of Rhodotorula glutinis were investigated for the production of enantiopure styrene oxide. The recombinant E. coli harboring the EH gene from R. glutinis exhibited the enantiopreference toward (R)-styrene oxide with the maximum hydrolytic activity of $165.04{\mu}mol/min/mg$ of dry cell weight (dcw). The addition of 0.5% (w/v) Tween 20 at $10^{\circ}C$ increased the initial hydrolysis rate and enantioselectivity by 1.45-fold and 2.0-fold, respectively. Enantiopure (S)-styrene oxide was prepared with 99% ee enantiopurity and 46.0% yield (theoretical yield=50%) from 20 mM racemic styrene oxide.

Delignification of Lignocellulosic Biomass with High-Boiling Point Solvent and Acidic Catalyst (고비점 용제와 산 촉매에 의한 목질 바이오매스의 탈리그닌)

  • Kim, Kang-Jae;Jung, Jin-Dong;Jung, Soo-Eun;Hong, Sung-Bum;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.119-126
    • /
    • 2016
  • In this study, we separated the lignin from the wood by using the high boiling point solvent for developing more environmental friendly pulping method. High boiling point solvents as Ethers, glycols and ketones were used to remove the lignin in the pine wood meals. The Yield and lignin content of residual wood meals was reduced according to the input of the catalyst. Me-C, E-Ca, TEG and MIBK had the best delignification rate of 9 kinds of high-boiling point solvents. At the hydrolysis ratio of the selected solvents, The TEG was highest remain ratio of carbohydrates and the E-Ca was lowest remain ratio of lignin. And the Me-C was most excellent lignin hydrolysis ratio at the low catalyst. The selectivity of delignification of Me-C, E-Ca, TEG and MIBK solvents were 49.6, 49.9, 53.8 and 53.1%, respectively, and its values were similar to those of the commercial Kraft Pulp.

Removal of Skin from Filefish Using Enzymes (효소를 이용한 말쥐치의 탈피)

  • KIM Se-Kwon;BYUN Hee-Guk;CHOI Kwang-Duck;ROH Ho-Seok;LEE Won-Hee;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.159-172
    • /
    • 1993
  • Collagenase existed in the internal organs of filefish Novoden modestrus was isolated with ammonium sulfate and was purified by ion exchange column chromatography with DEAE-Sephadex A-50 and gel filtration with Sephadex G-150. The activity of the purified enzyme was increased 92.4 folds than that of the crude one and the yield of the purified one was $10.9\%$. The optimum conditions showing the maximum activity of the crude enzyme to digest insoluble collagen(Type I) were $55^{\circ}C$ and pH 8.0, while those showing the maximum activity of the purified one were $55^{\circ}C$ and pH 7.75. However, the use of the crude enzyme for skinning of filefish was more profitable because the yield was 800 folds higher than that of the purified one and the cost was also able to economy. When hydrolysis for skinning of filefish was conducted with $0.3\%$(w/w) crude collagenase at $50^{\circ}C$ and pH 8.0 for 3hrs, there was some problem to cause a damage on muscle of the fish by heat. To solve such problem for the skinning, the hydrolysis at $18^{\circ}C$ for 4hrs with $0.3\%$ (w/w) crude enzyme after pretreated with 0.5M acetic acid for 10 min provided a good result for skinning of filefish.

  • PDF

Synthesis and Characterization of New Mono-N-functionalized Tetraaza Macrocyclic Nickel(II) and Copper(II) Complexes

  • Kim, Hyun-Ja;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2565-2570
    • /
    • 2011
  • The reaction of bromoacetonitrile with 3,14-dimethyl-2,6,13,17-tetraazatetracyclo[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{10}$) containing a N-$CH_2$-N linkage produces 17-cyanomethyl-3,14-dimethyl-2,6,13,17-tetraazatetracyclo-[$16.4.1^{2.6}.0^{1.18}.0^{7.12}$]tricosane ($L^{11}$). The mono-N-functionalized macrocyclic complexes $[ML^2]^{2+}$ (M = Ni(II) or Cu(II); $L^2$ = 2-cyanomethyl-5,16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^{7.12}$]docosane) can be prepared by the reaction of $L^{11}$ with nickel(II) or copper(II) ion in acetonitrile. The N-$CH_2CN$ group attached to $[ML^2]^{2+}$ readily reacts with water or methanol to yield the corresponding complexes of $HL^3$ bearing one N-$CH_2CONH_2$ pendant arm or $L^4$ bearing one $N-CH_2C(=NH)OCH_3$ group. The $N-CH_2CONH_2$ or $N-CH_2C(=NH)OCH_3$ group of each complex is coordinated to the central metal ion. Both $[NiL^4(H_2O)]^{2+}$ and $[CuL^4]^{2+}$ are quite stable in acidic aqueous solutions, but undergo hydrolysis to yield $[Ni(HL^3)(H_2O)]^{2+}$ or $[Cu(HL^3)]^{2+}$ in basic aqueous solutions. In contrast to $[Cu(HL^3)]^{2+}$, $[Ni(HL^3) (H_2O)]^{2+}$ is readily deprotonated to form $[NiL^3 (H_2O)]^+$ ($L^3$ = a deprotonated form of $HL^3$) in basic aqueous solutions.

Imporoved Method for the Preparation of Silk Fibroin Hyoysates

  • Shukhrat Madyarov;Lee, kawng-Gill;Yeo, Joo-Hong;Jin Nam;Lee, Yong-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.2
    • /
    • pp.108-115
    • /
    • 1999
  • An improvement of methods in fibroin hydrolysates preparat significantly enlarges their applications to practical use. Acidic hydrolysis by hydrohloric acid is one of the methods for silk fibroin depolymeriza6tion. A low yield of final product and long time of the process are the demerits of this method. Possibility of preparation of water-soluble silk hydrolysates with more yield and less expenses is investigated in this study. Such possibility is occurred with the increasing tratment temperature and simultaneously decreasing treatment time, concentration of hydrochoric acid respectively, the concentration of sodium hydroxide used for neutraliza6tion of hydolysates after hydrolysis. Colour is decreased in this case and a small amount of activated, too. Protection of hydrolysates against precipitation after neutraliza6tion, and separation and during concentrating process is the other merit of this method. Creamy-coloured insoluble silk powder is the remainder of hydrolyzed fibroin. This is the only the immobiliza6tion of enzymes and other physiological active substances. Fine particles of this powder can be used as additives for artificial diets and cultural media, as well as raw materials for polymer membranes, etc.

  • PDF