• Title/Summary/Keyword: hydrolysis stability

Search Result 222, Processing Time 0.033 seconds

Stability of Mono- and Bis-pyridinium Oximes in Aqueous Systems (Monopyridinium Oxime과 Bispyridinium Oxime 화합물의 수용액 중 안정성 연구)

  • Jung, Chang-Hee;Choi, Seung-Ju;Seo, Won-Jun;Sok, Dai-Eun
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.4
    • /
    • pp.273-279
    • /
    • 1994
  • The stability of three oximes, Hl-6 [(4-carbamoyl-2'[(hydroxyimino)-methyl]- 1,1'-oxydimethylenedi-(pyridinium chloride)], Hl-CN [(4 cyano-2'-[(hydroxyimino)-methyl] -1,1'-oxydimethylene-di-(pyridinium chloride)], and 2-PAM [pralidoxime chloride] in aqueous solutions was evaluated by HPLC assay. The rate of degradation is dependent on the pH as well as the temperature at which the solution is stored. The optimum pH for the stability of these oximes was pH 2 to 3. The degradation rate constant for 2-PAM ($k\;at\;70^{\circ}C$, $2.07{\times}10^{-4}/hr;\;E_a\;value$, 27.2 kcal/mol) was smaller than those for bis-pyridiniumoximes, Hl-6 ($k\;at\;70^{\circ}C$, $3.38{\times}10^{-3}/hr$) and Hl-CN ($k\;at\;70^{\circ}C$, $8.66{\times}10^{-3}/hr;\;Ea\;value$, 20.7 kcal/mol). In mechanistic analyses, it was found that Hl-CN was decomposed through not only the hydrolysis of nitrile group but also the cleavage of methylene ether bridge, in contrast to Hl-6 which was degraded mainly through the cleavage of methylene ether bridge.

  • PDF

In Vitro Stability of β-galactosidase Microcapsules

  • Kwak, H.S.;Kwon, S.H.;Lee, J.B.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1808-1812
    • /
    • 2002
  • The present study was carried out to examine the efficiency of microcapsules and a stability of lactase in vitro in the simulated gastric and intestinal conditions. As a coating materials, medium-chain triacylglycerol (MCT) and polyglycerol monostearate (PGMS) were used. The highest efficiency of microencapsulation was found in the ratio of 15:1 as coating to core material with both MCT (91.5%) and PGMS (75.4%). In a subsequent experiment, lactose content was measured to study a microcapsule stability. Lysis of microcapsules made by MCT in simulated gastric fluid was proportionally increased such as 3% in pH 5 and 11% in pH 2 for 20 min incubation. In the case of PGMS microcapsulation, 11-13% of lactose was hydrolyzed at 20 min in all pHs and also very little amount (less than 3%) of lactose was hydrolyzed after 20 min in all pHs. The highest percentages of lactose hydrolysis in MCT and PGMS microcapsules were 68.8 and 60.8% in pHs 7 and 8 during 60 min, respectively. Based on our data, the lactase microcapsules seemed to be stable when they stay in the stomach, and hydrolyzed rapidly in small intestine where the bile acid was excreted.

Preparation of Polystyrene particles based on interfacial stability of suspension polymerization (현탁중합의 계면안정에 따른 폴리스티렌 입자 제조)

  • 이진호;이상남;박문수;김은경;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.65-78
    • /
    • 2002
  • The suspension polymerization of styrene was carried out to obtain the narrow-size distribution of particle by using poly(vinyl alcohol) (PVA) as suspension stabilizer according to the degree of hydrolysis and the molecular weight. The stabilizing properties of suspension are also dependent on the interfacial tension of aqueous solution when PVA is added. When the polymerization process was carried out with low hydrolyzed PVA, it gave single, well-defined particles, while high hydrolyzed PVA gave clusters. The size of particle produced in this study ranged between 5${\mu}{\textrm}{m}$ and 10${\mu}{\textrm}{m}$. The suspending agent, PVA, influences on the drop size and drop stability, When the molecular weight of PVA is increased, the drop size decreases and the drops become more stable toward coalescence. An increase in the PVA concentration decreases the mean drop size and narrows the drop size distribution.

  • PDF

Characterization of Poly(styrene-b-vinylbenzylphosphonic acid) Copolymer by Titration and Thermal Analysis

  • Kim, Sang-Hun;Park, Young-Chul;Jung, Gui-Hyun;Cho, Chang-Gi
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.587-594
    • /
    • 2007
  • Well defined amphiphilic diblock copolymers of poly(styrene-b-vinylbenzylphosphonic acid) (PS-b-PVBPA) were prepared by controlled radical polymerization technique, two-step hydrolysis reactions using trime-thylsilyl bromide from the corresponding phosphonic ethyl ester. By indirect, backward pH titration of the block copolymer, a good titration curve of a dibasic acid was observed. The IEC values obtained from both backward pH titration and volumetric back titration were almost identical. Thermal gravimetric analysis (TGA) of the phosphonic acid containing block copolymer showed a high thermal stability up to $400^{\circ}C$.

Effect of Synthetic Resin Container on the Stability of FAD Solution (합성수지 용기가 FAD 수용액의 안정성에 미치는 영향)

  • 이계주;유병설
    • YAKHAK HOEJI
    • /
    • v.23 no.3_4
    • /
    • pp.147-152
    • /
    • 1979
  • Experiments were carried out to investigate for the interaction between FAD solution and synthetic resin containers made of polyvinylchloride(PVC), polyethylene(PE), and polycarbonate(PC), and for the effect of glycyrrhizine or malic acid on stabilization of FAD in aqueous solution by accelerated stability analysis. Analysis of FAD was determined by means of spectrometer and by separating by paper chromatography and metal ions were detected by atomic absorption spectrophotometer, which were extracted from containers by means of Food and Additive Regulation Standard. The thermal decomposition of FAD in aqueous solution was pseudo first order reaction and it was inhibited by adding glycyrrhizine or malic into the solution. PVC, PE and PC containers accelerated the decomposition of FAD in solution. It is assumed that bivalent heavy metals in resin containers may catalize the hydrolysis of FAD. The metals detected from the containers were Ca, Zn, Cu, Fe, Pb and Cd. And the total amounts of detected metals from PVC were 6.2mcg/cm$^{2}$, PE, 5.5mcg/cm$^{2}$, and PC, 2.7mcg/cm$^{2}$ which were proportional to the rate constant of FAD decomposition in aqueous solution.

  • PDF

Quality Characteristics of Grape Suspensions Using Protopectinase (Protopectinase를 이용한 포도 단세포화물의 품질 특성)

  • Kim, Dong-Ho
    • Culinary science and hospitality research
    • /
    • v.18 no.2
    • /
    • pp.162-171
    • /
    • 2012
  • This study was conducted to investigate the changes of macerating properties from grape suspensions for which both were treated with protopectinase(PPase) and mechanical maceration stored at $4^{\circ}C$ for 28 days. Changes of macerating properties such as pH, total acidity, color, total polyphenol and antioxidant activity of suspensions after enzymatic hydrolysis were determined before and after heating, and microscopic observation made on suspensions containing single cells. With the PPase, grapes were enzymatically macerated to separate cells to primary cell wall without damage. Also, the changes of macerating properties in grape suspension treated with PPase and after heat treatment at $80^{\circ}C$ for 30 min were more stable than those of mechanical maceration, indicating the thermal stability. Thus, the PPase treatment for grapes could be a better choice for preparing highly valuable and functional processed food as well as for prolonging preservation periods.

  • PDF

Modifications of skim milk protein by Meju protease and its effects on solubility, emulsion and foamming properties (메주 단백질 가수분해 효소가 탈지 우유의 기능성에 미치는 영향)

  • Lee, Jin-sil;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.9 no.4
    • /
    • pp.278-283
    • /
    • 1993
  • This study was attempted to investigate the effects of enzymatic modification of milk protein with protease on functional properties. The selected functional properties were solubility, emulsifying activity (EA), emulsion stability(ES), foam expansion(FE), and foam stability(FS). These properties were measu-red from pH 3.0 to pH 8.0. The proteases used in this study were iaolated from Meju(fermemted soybean) and had specific activity of 250 units/㎎ protein at pH 7.0, 1600 units of pretense was used for 1gr. of skim milk protein. Skim milk showed 30.5% degree of hydrolysis for 1 hr. and 36.4% degree of hydrolysis for 3.5 hrs. of protease treatment at pH 7.0. Solubility of native skim milk, control, 1 hr. and 3.5 hrs. groups were 3.37, 3.64, 10.21, 14.34%o at pH 4.0 respcetively. The emulsifying activity of native skim milk, control, 1 hr. and 3.5 hrs. groups were 38.8,42.0,43.0,46.7ft at pH 4.0, respectively. Enzymatic modification resulted in the increase of solubility and emulsifying activity at pH 4.0. However at pH 5.0 emulsifying activity of 1 hr. and 3.5 hr. group were lower than native skim milk and control groups. 1 hr. protease treatment was found to be most effective way of increasing foam expansion at pH 4.0 to 6.0. It was supported that, protease treated skim milk can be used to improve solubility, emulsifying activity, foam expansion at acid pH. meju protease. skim milk, solubility, emulsion, foam.

  • PDF

Biochemical and Thermal Stabilization Parameters of Polygalacturonase from Erwinia carotovora subsp. carotovora BR1

  • Maisuria, V.B.;Patel, V.A.;Nerurkar, A.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1077-1085
    • /
    • 2010
  • With an emphasis on its thermal behavior with different pHs and salts, the kinetic and thermodynamic parameters of the purified polygalacturonase (PG) from E. carotovora subsp. carotovora (Ecc) BR1 were studied, as the characterization of an enzyme is significant in the context of burgeoning biotechnological applications. The thermodynamic parameters for polygalacturonic acid hydrolysis by the purified PG were ${\Delta}H^*$=7.98 kJ/mol, ${\Delta}G^*$=68.86 kJ/mol, ${\Delta}S^*$=-194.48 J/mol/K, ${\Delta}G_{E-S}$=-1.04 kJ/mol, and ${\Delta}G_{E-T}$=-8.96 kJ/mol. In addition, its turnover number ($k_{cat}$) was 21/sec. The purified PG was stable within a temperature range of $20-50^{\circ}C$ and was deactivated at $60^{\circ}C$ and $70^{\circ}C$. The thermodynamic parameters (${\Delta}H^*$, ${\Delta}G^*$, ${\Delta}S^*$) for the irreversible inactivation of the PG at different temperatures ($30-60^{\circ}C$) were determined, where the effectiveness of various salts and different pHs (4-8) for the thermal stability of the PG were also characterized. The efficacy of various salts for the thermal stability of the PG was in the following order: $MgCl_2$ > $BaCl_2$ > KCl > $CaCl_2$ >NaCl. Therefore, the present work presents the biochemical, substrate hydrolysis thermodynamics and the thermal stabilization parameters of the PG from Ecc.

Hydrogen Supply to PEMFC for Unmanned Aero Vehicles Using Hydrolysis Reaction of NaBH4 (NaBH4 가수분해 반응에 의한 무인항공기용 PEMFC 수소공급)

  • Jung, Hyeon-Seong;Jo, Byung-Joo;Lee, Jung-Hoon;Lee, Han-Jong;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.11-15
    • /
    • 2016
  • Proton Exchange Membrane Fuel Cells (PEMFC) instead of batteries is appropriate for long time flight of unmanned aero vehicles (UAV). In this work, $NaBH_4$ hydrolysis system supplying hydrogen to PEMFC was studied. In order to decrease weight of $NaBH_4$ hydrolysis system, enhancement of hydrogen yield, recovery of condensing water and maintenance of stable hydrogen yield were studied. The hydrogen yield of 3.4% was increased by controlling of hydrogen pressure in hydrolysis reactor. Condensing water formed during air cooling of hydrogen was recovered into storage tank of $NaBH_4$ solution. In this process the condensing water dissolved $NaBH_4$ powder and then addition of $NaBH_4$ solution decreased system weight of 14%. $NaBH_4$ hydrolysis system was stably operated with hydrogen yield of 96% by 2.0g Co-P-B catalyst for 10 hours at 2.0L/min hydrogen evolution rate.

Kinetics of Base Hydrolysis of Some Chromen-2-one Indicator Dyes in Different Solvents at Different Temperatures (여러 온도 및 용매 하에서 수행된 chromen-2-one 지시약 염료들의 염기성 가수분해 반응에 대한 속도론적 연구)

  • Abu-Gharib, Ezz A.;EL-Khatib, Rafat M.;Nassr, Lobna A.E.;Abu-Dief, Ahmed M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.346-353
    • /
    • 2011
  • Base hydrolysis of 7-hydroxy-2H-chromen-2-one (HC) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA) in aqueous-methanol and aqueous-acetone mixtures were studied kinetically at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. Moreover, the change in the activation energy barrier of the investigated compounds from water to water-methanol and water-acetone mixtures was estimated from the kinetic data. It is observed that the change in activation barriers is more or less the same for the hydrolysis of HC and HCA. Base hydrolysis of HC and HCA follows a rate law with $k_{obs}=k_2[OH^-]$. The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of $OH^-$ ion. The high negative values of entropy of activation support the proposal mechanism, i.e. the investigated reaction takes place via the formation of an intermediate complex. Moreover, these values refer to the rigidity and stability of the intermediate complex. Thus, the ring opening of the intermediate complex would be the rate controlling step.