• Title/Summary/Keyword: hydrolysis products

Search Result 455, Processing Time 0.03 seconds

Study on the Solubility of U(VI) Hydrolysis Products by Using a Laser-Induced Breakdown Detection Technique (레이저유도파열검출 기술을 이용한 우라늄(VI) 가수분해물의 용해도 측정)

  • Cho, Hye-Ryun;Park, Kyoung-Kyun;Jung, Euo-Chang;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.189-197
    • /
    • 2007
  • The solubility of U(VI) hydrolysis products was determined by using a laser-induced breakdown detection (LIBD) technique. The experiments were carried out at uranium concentrations in range from $2{\times}10^{-4}\;M\;to\;4{\times}10^{-6}\;M$, pH values between 3.8 and 7.0, the constant ionic strength of 0.1 M $NaClO_4$ and the temperature of $25.0{\pm}0.1^{\circ}C$. The solubility product of U(VI) hydrolysis products was calculated from LIBD results by using the hydrolysis constants selected in NEA-TDB. The solubility product extrapolated to zero ionic strength, ${\log}K^{\circ}_{sp}=-22.85{\pm}0.23$ was calculated by using a specific ion interaction theory (SIT). The spectral features of ionic species in uranium solutions were investigated by using a conventional UV-visible absorption spectrophotometer and a fluorophotometer, respectively, $(UO_2)_2(OH)_2^{2+}\;and\;(UO_2)_3(OH)_5^+$ were dominant species at uranium concentration of $2{\times}10^{-4}\;M$.

  • PDF

Effect of External and Intramolecular Nucleophiles on Nature of Products of Carboxypeptidase A-Catalyzed Hydrolysis of Esters. Attempted Trapping of Acyl-Enzyme Intermediate (카르복시펩티다제A의 에스테르 가수분해 반응생성물의 종류에 대한 외부 및 분자내 친핵체의 영향. 아실-효소중간체의 포획시도)

  • Junghun Suh;Emil Thomas Kaiser
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.164-172
    • /
    • 1978
  • Carboxypeptidase A-catalyzed hydrolysis of ester substrates was carried out at room temperature in the presence of a number of external reagents. If the acyl-enzyme intermediate, an anhydride, is attacked by the external reagents, products formed by trapping at the acyl portion or at the enzyme portion of the anhydride group can be obtained. Examination of the uv/vis spectral properties of the reaction products and of changes in enzyme activity indicated that such trapping reactions did not occur. Also performed was evaluation of enzymatic rate parameters for the the hydrolysis of O-(o-hydroxyphenylacetyl)-L-${\beta}$-phenyllactate. Detection of 2-coumaranone possibly formed by attack of the o-hydroxy group as an intramolecular trapping group at the acyl-enzyme intermediate was tried, but no evidences for the intramolecular trapping reaction were obtained. Failure to trap the intermediate was discussed in terms of steric hindrance imposed on the approach of the trapping reagents to the anhydride group of the acyl-enzyme intermediate and of the fast enzymatic breakdown of the intermediate.

  • PDF

Influence of inorganic compounds on nanofiltration membrane fouling with Al hydrolysis products (알루미늄 수화물 나노여과 막오염에 대한 공존염의 영향에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.479-488
    • /
    • 2011
  • Nanofiltration was performed with polyaluminium chloride solutions at different pH conditions to understand effects of inorganic compounds on aluminum hydrolysis products, i.e., three distinctive groups of aluminum species: polymeric Al at low pH; $Al(OH)_3$ at neutral pH; and ${Al(OH)_4}^-$ at high pH. The PACl solution was prepared to be approximately 4.0mM and adjusted to the designated pH. The influence of inorganic compounds on Al species fouling was investigated with 4.9mM $CaCl_2$ and 3.5mM $MgSO_4$ because $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${SO_4}^{2-}$ are the most common inorganics in the drinking water. NF membrane fouling was measured by flux decline rate. The impact of $CaCl_2$ was not significant on the individual Al hydrolysis products fouling. However, the flux decline rate was drastically changed in the presence of $MgSO_4$. The concentration of particulate matters was considerably increased possibly due to interaction between Al species and ${SO_4}^{2-}$ where $MgSO_4$ was introduced. The particulates were accumulated on the membrane and enhanced the hydraulic resistance of the cake layer. In addition, conductivity removal of the membrane was decreased when Al-hydroxide was dominant due to reduction of membrane surface charge. The rejection of $Ca^{2+}$and $Mg^{2+}$ were considerably different, which implys that composition of inorganics paly a role on conductivity removal.

Kinetic Studies on Enzymatic Hydrolysis of Cellulose(II) - Evaluation of Several Factors for Enzyme Adsorption and Initial Hydrolysis - (섬유소 가수분해반응에 관한 연구(II) - 효소흡착과 가수분해반응에 관여하는 여러인자의 영향 -)

  • Lee, Yong-Hun;Kim, Chul
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.167-174
    • /
    • 1991
  • Enzymatic cellulose hydrolysis depends on the several factors such as the structural features (CrI, particle size and surface area, etc.), the nature of cellulase enzyme system, the inhibitory effects of products, and enzyme deactivation. At the presence of products on the initial hydro- lysis rate of cellulose, cellobiose has more severe inhibitory effect than glucose. Othewise, the inhibition effect of products for adsorbed enzyme is related to the glucose and cellobiose conentration hyperbolically. Enzyme deactivation of FPA and ${\beta}-glucosidase$ were expressed by exponential decay profile.

  • PDF

감귤류 변패의 원인균인 Penicillium sp.-L4가 생성하는 식물세포벽 분해효소의 작용양상

  • 김무성;최영길
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.115-120
    • /
    • 1997
  • Penicillium sp.-L4, a causative fungus of rot in citrus fruits, was isolated and its mode of hydrolytic enzyme production was investigated. Carboxymethylcellulase (CMCase), polygalacturonase(PGase), extra- & intra-cellular $\beta$-glucosidase and cellobiase were produced drastically by addition of substrates in minimal media. Production of the hydrolytic enzymes were induced efficiently by cellobiose and cellooligosaccharides which were the products of cellulose hydrolysis, but repressed by addition of mono-saccharide such as glucose, raffinose, galacturonic acid. The relative activity of p-nitrophenyl-$\beta$-D-glucopyranoside(PNPG) hydrolysis was higher than that of cellobiose hydrolysis in extracellular enzymes, and reverse is true in intracellular enzymes. Intact enzyme production of P. sp.-L4 on lemon peel lesion was sequential. $\beta$-Glucosidase and CMCase were produced first and followed by PGase. The enzyme productivities and pH in lesions were coincident with optimal pH of each enzyme activities.

  • PDF

The Preparation and Identification of Hydrolysis Oligosaccharide from White Copra Meal by Yeast Fermentation and Sunflower Seed Enzymes

  • Park, Gwi-Gun
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.179-183
    • /
    • 2000
  • $\beta$-1,4-Mannotriose was prepared b he enzymatic hydrolysis of white copra meal (WCM) and the subsequent elimination of monosaccharides from the resultant hydrolysate with a yeast. The enzyme system from sunflower seed hydrolyzed WCM and produced monosaccharides and $\beta$-1,4-mannotriose without other oligomers at the final stage of the reaction. WCM(50g) was hydrolyzed at 5$0^{\circ}C$ and pH 4.5 for 24 hr with crude enzyme solution (500 mL) from sunflower seed. By the elimination of monosaccharides from the hydrolysis products with a yeast (Candida glaebosa), 8.1 g of crystalline mannotriose was obtained without the use of chromatographic techniques. After 48hr of yeast cultivation, the total sugar content decreased from 4.6% to 3.5%, whereas the average degree of polymerization increased from 2.3 to 3.1.

  • PDF

Theoretical Studies on the Acid-Catalyzed Hydrolysis of Sulfinamide

  • 김찬경;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.880-886
    • /
    • 1997
  • Ab initio calculations were carried out on the gas phase acid-catalyzed hydrolysis reactions of sulfinamide using the 3-21G* basis sets. Single point calculations were also performed at the MP2/6-31G* level. The first step in the acid-catalyzed hydrolysis of N-methylmethanesulfinamide, Ⅰ, involves protonation. The most favorable form is the O-protonated one, Ⅱ, which is then transformed into a sulfurane intermediate, Ⅲ, by addition of a water molecule. The reaction proceeds further by an intramolecular proton transfer from O to N (TS2), which is followed by N-S bond cleavage (TS3) leading to the final products. The rate determining step is the N-S bond cleavage (TS3) at the RHF/3-21G* level, whereas it becomes indeterminable at the MP2/6-31G*//3-21G* level of theory. However, the substituent effect studies with N-protonated N-arylmethanesulfinamide, ⅩⅢ, at the MP2/6-31G*//3-21G* level support the N-S bond breaking step as rate limiting.

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

Hydrolysis of Sulfur Mustard(HD) in Water (Sulfur Mustard(HD)의 가수분해)

  • Lee, Yong-Han;Lee, Jong-Chol;Choi, Soo;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.291-297
    • /
    • 2007
  • The hydrolysis reaction of sulfur mustard(HD, bis 2-chloroethylsulfide), one type of the blister agents was studied in water to find the operation conditions which can convert HD into less toxic compounds. The reaction was proceeded into two steps. First, 10~20 wt% of HD was hydrolyzed in water at $90^{\circ}C$ for 2 hr and aqueous sodium hydroxide solution(2.1 eq) was subsequently added to the reaction mixture at room temperature. The efficiency of HD hydrolysis at this experimental conditions was greater than 99.99% and the final degradation products of HD were 68 wt% of thiodiglycol, 8 wt% of 1,2-bis(2-hydroxyethylthio)ethane and 24 wt% of bis(2-hydroxyethylthioethyl)ether.

Functional Characteristics of Whey Protein-Derived Peptides Produced Using Lactic Acid Bacteria Hydrolysis

  • Jae-Yong Lee;Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ok-Hee Kim;Dong-Hyun Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.34-43
    • /
    • 2023
  • Hydrolysis of whey-derived proteins using lactic acid bacteria (LAB) utilizes the mass culture method and fermentation of LAB to produce effective bioactive peptides. Whey protein has the biological potential of its precursors, but the active fragments may not be released depending on the hydrolysis method. As an alternative to these problems, the nutritional and bioactive functionality of the hydrolysis method have been reported to be improved using LAB for whey protein. Peptide fractions were obtained using a sample fast protein liquid chromatography device. Antioxidant activity was verified for each of the five fractions obtained. In vitro cell experiments showed no cytotoxicity and inhibited nitric oxide production. Cytokine (IL [interleukin]-1α, IL-6, tumor necrosis factor-α) production was significantly lower than that of lipopolysaccharides (+). As a result of checking the amino acid content ratio of the fractions selected through the AccQ-Tag system, 17 types of amino acids were identified, and the content of isoleucine, an essential amino acid, was the highest. These properties show their applicability for the production of functional products utilizing dietary supplements and milk. It can be presented as an efficient method in terms of product functionality in the production of uniform-quality whey-derived peptides.