• Title/Summary/Keyword: hydrolysis of phosphodiester

Search Result 2, Processing Time 0.014 seconds

The Roles of Hydrogen Bonds in 2,9-(N,N-Dimethylethylenediaminomethyl)-1,10-phenanthroline Molecule as a New Ligand Compound of Artificial DNase (인공 DNase의 리간드 화합물로써 2,9-(N,N-Dimethylethylenediaminomethyl)-1,10-phenanthroline 분자내 수소결합들의 역할)

  • Sung, Nack-Do;Park, Kyeng-Yong
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.326-330
    • /
    • 2005
  • In the catalytic hydrolysis of 2',3'-cAMP by the Cu(II) complexes of 2,9-(N,N-dimethylethylenediamino)-1,10-phenanthroline (A) and 2,9-(N,N-dimethylethylenediaminomethyl)-1,10-phenanthroline (B) that are designed as a new ligand molecule of artificial DNase, due to the four intramolecular H-bonds forming between amino groups of ligand molecule and phosphoryl group of 2',3'-cAMP. It is anticipated that Cu(II) complexes of (A) and (B) are able to promote a rate that is as much as seventy thousand times faster than the catalytic hydrolysis rate of 2',3'-cAMP by Cu(II) complexes of 2,9-dimethyl-o-phenanthroline.

Enzymatic Hydrolysis of p-Nitrophenyl Phsphoryl Derivatives by Phospholipase D

  • Cha, Joo-Yeun;Lee, Ji-Eun;Koh, Eun-Hie;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.1001-1003
    • /
    • 1994
  • A series of phosphodiesters of p-nitrophenyl phosphoryl derivatives were synthesized and used as a model substrate for phospholipase D (PLD). The phosphodiester substrates were synthesized from p-nitrophenyl phosphorodichloridate and corresponding alcohols with different chain lengths and polar groups. To measure the activity of PLD, either spectroscopic method for p-nitrophenol or pH-stat titration method was employed. For each substrate, effects of substrate concentration, pH, and $Ca^{2+}$ ion were examined. The kinetic parameters $V_{max}$ for the different substrates were varied depending on the chain lengths or charge of the alcohols. No calcium effect was observed in the hydrolysis of neutral and negatively charged alcohol derivatives, while positively charged choline derivative showed a strong $Ca^{2+}$ ion dependence.