• Title/Summary/Keyword: hydrolysis conditions

Search Result 654, Processing Time 0.031 seconds

Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea

  • Sunwoo, In Yung;Nguyen, Trung Hau;Sukwong, Pailin;Jeong, Gwi-Teak;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.401-408
    • /
    • 2018
  • The waste seaweed from Gwangalli beach, Busan, Korea was utilized as biomass for ethanol production. Sagassum fulvellum (brown seaweed, Mojaban in Korean name) comprised 72% of the biomass. The optimal hyper thermal acid hydrolysis conditions were obtained as 8% slurry contents, 138 mM sulfuric acid, and $160^{\circ}C$ of treatment temperature for 10 min with a low content of inhibitory compounds. To obtain more monosaccharides, enzymatic saccharification was carried out with Viscozyme L for 48 h. After pretreatment, 34 g/l of monosaccharides were obtained. Pichia stipitis and Pichia angophorae were selected as optimal co-fermentation yeasts to convert all of the monosaccharides in the hydrolysate to ethanol. Co-fermentation was carried out with various inoculum ratios of P. stipitis and P. angophorae. The maximum ethanol concentration of 16.0 g/l was produced using P. stipitis and P. angophorae in a 3:1 inoculum ratio, with an ethanol yield of 0.47 in 72 h. Ethanol fermentation using yeast co-culture may offer an efficient disposal method for waste seaweed while enhancing the utilization of monosaccharides and production of ethanol.

Preparation of plastein product from soymilk residue protein (두유박 단백질을 이용한 plastein의 합성)

  • Lee, Sang-Joon;Park, Woo-Po;Moon, Tae-Wha;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.501-506
    • /
    • 1992
  • Pepsin-catalyzed hydrolysis and plastein reaction were carried out to prepare plastein product from soymilk residue protein. Conditions required for optimal hydrolysis of soymilk residue protein and subsequent plastein production were investigated. The optimum substrate concentration, enzyme-substrate ratio, pH, reaction temperature and incubation time for hydrolysis were 3%, 1/50, 1.7, $45^{\circ}C$ and 24 hours, respectively. Plastein formation from peptic hydrolysate of soymilk residue protein was most effective at substrate concentratin of 40%, pH 4 and $45^{\circ}C$. Reaction time of 18 hours and enzyme-substrate ratio of 1/100 were selected for plastein production. Electrophoresis of the products revealed that protein-like substances of high molecular weight were produced from the plastein reaction.

  • PDF

Fabrication of Hydroxyapatite Whiskers by Hydrolysis of α-TCP (α-TCP의 가수분해에 의한 수산화아파타이트 휘스커의 제조)

  • 백동주;양태영;이윤복;윤석영;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.608-614
    • /
    • 2003
  • Well developed hydroxyapatite whiskers (length 5 ${\mu}{\textrm}{m}$, diameter 0.5 ${\mu}{\textrm}{m}$) have been synthesized by the hydrolysis reaction of $\alpha$-tricalcium phosphate ($\alpha$-Ca$_3$(PO$_4$)$_2$) under pH 9.1 at 9$0^{\circ}C$ for 6 h. The effect of reaction conditions (temperature, time, pH) on the conversion of $\alpha$-tricalcium phosphate to hydroxyapatite was examined. In addition, the hydroryapatite was characterized in terms of microstructure, composition and thermal stability using XRD, SEM, ICP, and TGA instruments.

Hydrolytic Degradation of Synthetic Polytrimethylene Terephthalate and Characterization by MALDI-TOF Mass Spectrometry

  • Yang, Eun-Kyung;Jang, Sung-Woo;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.477-482
    • /
    • 2011
  • The structural analysis of polytrimethylene terephthalate (PTT) and characterization of the hydrolytic degradation products after acid hydrolysis were performed using MALDI-TOF mass spectrometry. Mass spectra of the PTT samples were analyzed using a self-calibration method as well as an internal calibration method with standard materials of known masses. PTT structures constituting the samples were determined from the analyses of the spectra, and their relative compositions were estimated. The MALDI-TOF mass spectra of the acid-hydrolyzed PTT sample showed three main series of oligomer products with different end groups in accordance with the hydrolysis schemes. From the spectra of both $Na^+$ and $K^+$ adducts, it was concluded that the PTT samples have higher affinity for $Na^+$ compared with $K^+$ and therefore show higher ionization efficiency with sodium ions when dithranol is used as a matrix. Two different wavelength laser beams ($\lambda$ = 337 nm and 355 nm) were tested and it was observed that the 355 nm beam was more efficient in obtaining the MALDI spectra of PTT using dithranol as a matrix under our experimental conditions.

Morphology Changes of Hydroxyapatite in Different Hydrolysis Conditions (가수분해 조건에 따른 수산화인회석의 형상변화)

  • Choi, Kyoung-Rim;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.350-356
    • /
    • 2018
  • Hydroxyapatite has been used for biomaterials since it has high biocompatibility. In this study, c-plane oriented hydroxyapatite was synthesized by hydrolysis of dicalcium phosphate intermediate by controlling temperature, concentration and pH. In basic condition, rod-like hydroxyapatite crystals were aggregated to form irregular particles in low concentration and plate-like particles exposed c-plane of hydroxyapatite crystal were obtained in high concentration, causing difference of 3 mV in zeta potential. Physicochemical properties of product were characterized by XRD, SEM, FT-IR, zeta potential measurement.

Physicochemical Properties of Gamma-Irradiated Corn Starch

  • Lee, Yong-Jin;Kim, Sun-Young;Lim, Seung-Taik;Han, Sag-Myung;Kim, Hye-Mi;Kang, Il-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.146-154
    • /
    • 2006
  • Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples. The degree of polymerization and the paste viscosity of irradiated starch samples dose-dependently decreased significantly with irradiation, and increased solubility and clarity were observed in the irradiated starch solution. In addition, the degree of retrogradation decreased as irradiation dose increased. Irradiation of corn starch has advantages over the ordinary acid or the enzyme hydrolysis modification methods. It does not affect the granular shape and crystalline phase of starch during hydrolysis, and the process can be carried out in dry state.

Effect of Substrate Temperature on Multi-component Particle Deposition and Consolidation in Flame Hydrolysis Deposition (화염가수분해 증착 공정에서 기판온도의 변화에 따른 다성분 입자의 부착 및 소결특성에 관한 연구)

  • Shin, Hyung-Soo;Baek, Jong-Gab;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.428-433
    • /
    • 2000
  • The consolidation behavior of multicomponent particles prepared by the flame hydrolysis deposition process is examined to identify the effects of Si substrate temperature. To fabricate multi-component particles, a vapor-phase ternary mixture of $SiCl_4(100 cc/min),\;BCl_3(30cc/min)\;and\;POCl_3,(5cc/min)$ was fed into a coflow diffusion oxy-hydrogen flame burner. The doped silica soot bodies were deposited on silicon substrates under various deposition conditions. The surface temperature of the substrate was measured by an infrared thermometer. Changes in the chemical states of the doped silica soot bodies were examined by FT-IR(Fourier-transformed infrared spectroscopy). The deposited particles on the substrate were heated at $1300^{\circ}C$ for 3h in a furnace at a heating rate of 10K/min. Si-O-B bending peak has been found when surface temperature exceeds $720^{\circ}C$. Correspondingly, the case with substrate temperatures above loot produced good consolidation result.

  • PDF

Dilute Acid Pretreatment for Conversion the Agricultural Residue into Bioenergy (농산부산물의 바이오에너지 전환을 위한 묽은산 전처리)

  • Won, Kyung-Yoen;Jeong, Tae-Su;Choi, Won-Il;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.511-511
    • /
    • 2009
  • Lignocellulosic biomass is the most abundant organic material on earth and also promising raw material for bioenergy production. Agricultural residues in the process of bio-oil extraction, is an abundant and low-cost lignocellulosic material. The technology for conversion of lignocellulosic biomass resources to fuels and chemicals, such as ethanol, has been under development for decades. One of the well-studied technologies that are currently being commercialized is to use a dilute acid-catalyzed pretreatment followed by enzymatic hydrolysis and fermentation to produce ethanol. In this work, the dilute-acid hydrolysis of agricultural residues was optimized through the utilization of statistical experimental design. Evaluation criteria for optimization of the pretreatment conditions were based on high xylose recovery and low inhibitor contents in the hydrolyzates. The purpose of this study was to gain a more accurate understanding of the quantities of acid required for effective hydrolysis and the reactivity trade-offs with reaction time and temperature that will enable overall process optimization.

  • PDF

A Study on the Weight Loss of Island-in-a Sea Fabrics by Ultrasonic (초음파를 이용한 해도직물의 감량 가공에 관한 연구)

  • 신현세;윤철수;임병완
    • Textile Coloration and Finishing
    • /
    • v.16 no.1
    • /
    • pp.40-47
    • /
    • 2004
  • Alkaline treatment gives Sea-Island type yam to produce microfiber and silk-like touch. But this treatment have some problems in dyeing and finishing process. To solve some problem occurred in dyeing and finishing of polyester fabric, the ultrasonic treatment technique was used recently. This study was carried out to confirm the effect of the ultrasonic treatment on alkaline weight loss finishing of polyester fiber under general alkaline treatment conditions; NaOH concentration 2, 3, 4, and 5%, treatment time 5, 10, 15, and 20 minutes, treatment temperature 70, 80, 90, and 99'E, respectively. On the other hand, the three way lay out method was used to test of significant obtained data from alkaline treatment. It was found that weight loss increased with increasing the NaOH concentration, temperature, and time. Also, in case of PET/Co-PET fabrics by ultrasonic, weight loss and dissolution of microfiber were superior to PET/Co-PET fabrics without ultrasonic. Tensile strength and modulus decreased with increasing NaOH concentrations and hydrolysis time. Therefore, the effect of alkali hydrolysis by ultrasonic application was better than that of the conventional method.

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A.;Ghosh, A.;Pandey, R.A.;Mudliar, S.N.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.216-223
    • /
    • 2015
  • The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.