The study will assess the seasonal effect of hydrological models on performance and parameters for streamflow simulation. TPHM, GR4J, CAT, and TANK-SM hydrological models will be applied for simulating streamflow in ten small and large watersheds located in South Korea. The readily available hydrometeorological data will be applied as an input to the four hydrological models and the potential evapotranspiration will be computed using the Penman-Monteith equation. The SCE-UA algorithm implemented in PEST will be used to calibrate the models considering similar objective functions bedside the calibration will be renewed to capture the seasonal effects on the model performance and parameters. The seasonal effects on the model performance and parameters will be presented after assessing the four hydrologic models results. The conventional approach and season-based results will be evaluated for each model in the tested watersheds and a conclusion will be made based on the finding of the results.
Water resources management depends on dealing inherent uncertainties stemming from climatic and hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow forecasts basically contain uncertainties arising from model structure and initial conditions. Recent enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The approach here proposes integration and coupling of global climate models (GCM), multiple regional climate models, and numerous hydrological models to improve streamflow forecasting and characterize system uncertainty through generation of ensemble forecasts.
본 연구에서는 PRMS, SLURP, SWAT 모형을 이용하여 유출모형에 따라 수자원의 기후변화 영향평가 결과에서 발생할 수 있는 차이를 평가하였다. 이를 위해 먼저 각 모형을 안동댐유역에 적용하여 관측자료에 대한 모의능력을 비교하였다. 그 다음 기온과 강수 변화를 가정한 합성시나리오 상황에서 각 모형별 모의결과를 비교하였다. 분석결과 세 모형은 관측기간에 대해서는 관측유량에 근접한 모의를 하였다. 그러나 강수와 기온의 변화를 고려하였을 경우에는 유출량의 변화량 모의에서 각 모형별로 상이한 결과를 보였다. 특히 기온이 크게 증가할 경우 모형별 결과차이가 증가하는 것으로 분석되었는데, 이것은 각 모델에서 이용하는 증발산량 추정방법의 차이가 가장 크게 영향을 미치는 것으로 분석되었다. 따라서 이러한 불확실성을 고려한 수자원 영향평가 방법이 필요할 것으로 판단되었다.
This paper presents a study of hydrological and hydraulic model applications in environmental impact statements which were submitted during recent years in Korea. In many cases (almost 70 %), the hydrological and hydraulic changes were neglected from the impact identification processes, even if the proposed actions would cause significant impacts on those environmental items. In most cases where the hydrological and hydraulic impacts were predicted, simple equations were used as an impact prediction tool. Computer models were used in very few cases(5%). Even in these few cases, models were improperly applied and thus the predicted impacts would not be reliable. The improper applications and the impact neglections are attributed to the fact that there are no available model application guidelines as well as no requirements by the review agency. The effects of mitigation measures were not analyzed in most cases. Again, these can be attributed to no formal guidelines available for impact predictions until now. A brief guideline is presented in this paper. This study suggested that the model application should be required and guided in detail by the review agency. It is also suggested that the hydrological and hydraulic items shoud be integrated with the water quality predictions in future, since the non-point source pollution runoff is based on the hydrologic phenomena and the water quality reactions on the hydraulic nature.
최적관리방안 (Best Management Practices)은 토양 침식과 비점오염원으로 인한 수질악화를 개선하는 방안으로 널리 이용된다. 모델을 이용하여 토양침식이나 최적관리관행의 잠재적 효과를 추정하는 것은 해당 지역의 전반적인 조건과 문제점을 식별하고 이에 대한 보전계획을 수립하는데 도움이 된다. 그러나 데이터, 특히 GIS (Geographic Information System) 데이터, 데이터 스케일의 문제, 혹은 모델의 선택 등에서 오는 불확실성은 최적관리방안의 효과를 예측하는데 있어서 정확성과 신뢰성을 떨어뜨리고 있다. 따라서 이 논문에서는 수리모델의 발전과 배경, 데이터의 불확실성, 모델의 선택, 그리고 데이터의 스케일 등을 참고문헌을 통하여 전반적으로 정리하고 살펴봄으로서 불확실성의 전반적인 이해를 돕고자 하였다. 또한 모델을 이용한 최적관리방안의 효과를 예측함에 있어서 소규모(small scale) 모델과 분포형 (spatially distributed) 모텔의 장점에 대해서도 논의하였다.
The study will quantify the total uncertainties in streamflow and precipitation projections for Upper Awash River Basin located in central Ethiopia. Three hydrological models (GR4J, CAT, and HBV) will be used to simulate the streamflow considering two emission scenarios, six high-resolution GCMs, and two downscaling methods. The readily available hydrometeorological data will be applied as an input to the three hydrological models and the potential evapotranspiration will be estimated using the Penman-Monteith Method. The SCE-UA algorithm implemented in PEST will be used to calibrate the three hydrological models. The total uncertainty including the incremental uncertainty at each stage (emission scenarios and model) will be presented after assessing a total of 24 (=$2{\times}6{\times}2$) high-resolution precipitation projections and 72 (=$2{\times}6{\times}2{\times}3$) streamflow projections for the study basin. Finally, the primary causes that generate uncertainties in future climate change impact assessments will be identified and a conclusion will be made based on the finding of the study.
수문학적 모형들은 지구 물 순환에 있어서의 지표 성분을 모의하고 기후의 변화나 변동이 수자원에 미치는 영향을 평가하는데 메카니즘을 제공한다. 이러한 모형들에 있어서 증발산량(Evapotranspiration, ET)은 매우 중요한 요소이다. 본 연구에서는 SLURP 모형에서 증발산량 산정을 위하여 제시하고 있는 FAO Penman-Monteith, Motorn CRAE(Complementary Relationship Area Evapotranspiration), Spittlehouse-Black, Granger, the Linarce 등, 5 종류의 모형에 대하여 각각의 모형이 일 하천유출량에 미치는 영향을 분석해 보았다. 또한, 각 증발산 방법과 SLURP 모형의 매개변수와의 민감도 분석을 실시하였다.
The low flow is the necessary and important index to establish national water planning, however there are lots of uncertainty in the low flow estimation. Therefore, the objectives of this study are to assess the climate change uncertainty and the effects of hydrological models on low flow estimation. The 5 RCMs (HadGEM3-RA, RegCM4, MM5, WRF, and RSM), 5 statistical post-processing methods and 2 hydrological models were applied for evaluation. The study area were selected as Chungju dam and Soyang river dam basin, and the 30 days minimum flow is used for the low flow evaluation. The results of the uncertainty analysis showed that the hydrological model was the largest source of uncertainty about 41.5% in the low flow projection. The uncertainty of hydrological model is higher than the other steps (RCM, statistical post-processing). Also, VIC model is more sensitive for climate change compared to SWAT model. Therefore, the hydrological model should be thoroughly reviewed for the climate change impact assessment on low flow.
Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.
SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.