• Title/Summary/Keyword: hydrological factors

Search Result 234, Processing Time 0.026 seconds

Vegetation Diversity and Management Strategy of Mountain Wetlands in Cheonchuksan(Mt.) in Uljin (천축산 일대 산지습지의 식생다양성과 관리방안)

  • Lim, Jeong-cheol;Ahn, Kyung-hwan;Jo, Gwang-jin;Chu, Yeoun-soo;Yoon, Jung-do;Lee, Chang-su;Choi, Byoung-ki
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.264-274
    • /
    • 2020
  • This study aims to clarify the diversity and distribution characteristics of plant communities in four small mountain wetlands located in the high altitude area of Cheonchuk Mountain within the Wangpicheon Basin Ecological Landscape Conservation Area in Seomyeon, Uljin-gun, Gyeongsangbuk-do. A total of 26 vegetation data were collected according to the Z.-M. school's phytosociological vegetation survey method considering the homogeneity of habitat type and species composition. Four physiognomic vegetation types composed of 9 syntaxa was confirmed through vegetation classification according to dominant correlation and vegetation type classification considering species composition. The Iris ensata var. spontanea-Molinia arundinacea community is a dominant plant community representing the research area. After human use, vegetation is developing through natural transition in a homogeneous location left unattended, but the distribution of other plant communities was rarely observed due to the narrow wetland area. The microtopography and hydrological environment of each wetland were identified as key factors affecting the diversity and distribution of vegetation.

Study on SCS CN Estimation and Flood Flow Characteristics According to the Classification Criteria of Hydrologic Soil Groups (수문학적 토양군의 분류기준에 따른 SCS CN 및 유출변화특성에 관한 연구)

  • Ahn, Seung-Seop;Park, Ro-Sam;Ko, Soo-Hyun;Song, In-Ryeol
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.775-784
    • /
    • 2006
  • In this study, CN value was estimated by using detailed soil map and land cover characteristic against upper basin of Kumho watermark located on the upper basin of Kumho river and the hydrologic morphological characteristic factors were extracted from the basin by using the DEM document. Also the runoff analysis was conducted by the WMS model in order to study how the assumed CN value affects the runoff characteristic. First of all, as a result of studying the soil type in this study area, mostly D type soil was Identified by the application of the 1987 classification criteria. However, by that in 1995, B type soil and C type soil were distributed more widely in that area. When CN value was classified by the 1995 classification criteria, it was estimated lower than in 1987, as a result of comparing the estimated CNs by those standars. Also it was assumed that CN value was underestimated when the plan for Geum-ho river maintenance was drawn up. As a result of the analysis of runoff characteristic, the pattern of generation of the classification criteria of soil groups appeared to be similar, but in the case of the application of the classification criteria in 1995, the peak rate of runoff was found to be smaller on the whole than in the case of the application of the classification criteria in 1987. Also when the statistical data such as the prediction errors, the mean squared errors, the coefficient of determination and other data emerging from the analysis, was looked over in total, it seemed appropriate to apply the 1995 classification criteria when hydrological soil classification group was applied. As the result of this study, however, the difference of the result of the statistical dat was somewhat small. In future study, it is necessary to follow up evidence about soil application On many more watersheds and in heavy rain.

Univariate Analysis of Soil Moisture Time Series for a Hillslope Located in the KoFlux Gwangneung Supersite (광릉수목원 내 산지사면에서의 토양수분 시계열 자료의 단변량 분석)

  • Son, Mi-Na;Kim, Sang-Hyun;Kim, Do-Hoon;Lee, Dong-Ho;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.88-99
    • /
    • 2007
  • Soil moisture is one of the essential components in determining surface hydrological processes such as infiltration, surface runoff as well as meteorological, ecological and water quality responses at watershed scale. This paper discusses soil moisture transfer processes measured at hillslope scale in the Gwangneung forest catchment to understand and provide the basis of stochastic structures of soil moisture variation. Measured soil moisture series were modelled based upon the developed univariate model platform. The modeling consists of a series of procedures: pre-treatment of data, model structure investigation, selection of candidate models, parameter estimation and diagnostic checking. The spatial distribution of model is associated with topographic characteristics of the hillslope. The upslope area computed by the multiple flow direction algorithm and the local slope are found to be effective parameters to explain the distribution of the model structure. This study enables us to identify the key factors affecting the soil moisture distribution and to ultimately construct a realistic soil moisture map in a complex landscape such as the Gwangneung Supersite.

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

A Comparative Study on the Drought Indices for Drought Evaluation (가뭄평가를 위한 가뭄지수의 비교 연구)

  • Ryu, Jae-Hea;Lee, Dong-Ryul;Ahn, Jae-Hyun;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.397-410
    • /
    • 2002
  • In order to quantitatively identify historical drought conditions and to evaluate their variability, drought indices commonly used. The calculation method for the drought index based on the principal hydrological factors, such as precipitation and reservoir storage, can estimate the duration and intensity of a drought. In this study the Palmer-type formula for drought index is derived for the Nakdong River basin by analyzing the monthly rainfall and meteorological data at 21 stations. The Palmer Drought Severity Index(PDSI) is used for dry land sectors to evaluate the meteorological anomaly in terms of an index which permits time and space comparisons of drought severity. The Surface Water Supply Index(SWSI) is devised for the use in conjunction with the Palmer index to provide an objective indicator of water supply conditions in Nakdong River basin. The SWSI was designed to quantify surface water supply capability of a watershed which depends on river and reservoir water The Standardized Precipitation Index(SPI) is evaluated for various time periods of 1 to 12 months in Nakdong River basin. For the purpose of comparison between drought indices correlation coefficient was calculated between indices and appropriate SPI time period was selected as 10 months for Nakdong River basin. A comparative study is made to evaluate the relative severity of the significant droughts occurred in Nakdong River basin since 1976. It turned out that $'94{\sim}'97$ drought was the worst drought in it's severity. It is found that drought indices are very useful tools in quantitatively evaluating the severity of a drought over a river basin.

Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area (Sentienl-1 SAR 토양수분 산정 연구: 농지와 초지지역을 중심으로)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.973-983
    • /
    • 2020
  • Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there're still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.

Holocene Climate Optimum and environmental changes in the Paju and the Cheollipo areas of Korea (한반도 홀로세 온난기후 최적기 (Holocene Climate Optimum)와 지표환경 변화)

  • Nahm, Wook-Hyun;Lim, Jae-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.15-30
    • /
    • 2011
  • Three sediment cores from two different locations (UJ-03 and UJ-12 cores of valley sediment in Paju area, and CL-4 core of wetland sediment in Cheollipo area) along the western Korean Peninsula yield crucial information on the timing and spatial pattern of century-scale climate changes and subsequent surficial responses during the Holocene. In Paju area, the sediments included abundant coarse-grained sediment (coarse sands and pebbles) from 7100 to 5000 cal. yrBP, total organic carbon (TOC) values showed a marked increase from 5000 to 2200 cal. yrBP, several intermittent depositional layers were observed from 2200 cal. yrBP. In Cheollipo area, lake environment developed from 7360 to 5000 cal. yrBP, the deposition of organic materials increased from 5000 to 2600 cal. yrBP, peatland formed from 2600 cal. yrBP. The two patterns of surficial responses to the climate changes through the Holocene are different to each other. This might be due to the dissimilarity in geomorphic conditions. However, the approximate simultaneity of environmental changes in two areas shows that they both can be correlated to the major climate changes. Two areas which have undergone significant changes indicated that the hydrological factors including precipitation and strength of water flow were most responsible for the landscape and geomorphic evolutions. Although the upwards trend in relative sea-level also played a primary role for environmental changes in coastal area (Cheollipo area), detailed studies have still to be undertaken.

  • PDF

A Statistical Study Evaporation tn DAEGU Area (대구지방의 증발량에 대한 통계학적 연구)

  • 김영기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.4
    • /
    • pp.3160-3169
    • /
    • 1973
  • Rainfall, evaporation, and permeability of water are the most important factors in determining the demand of water. The Daegu area has only a meteorologi observatory and there is not sufficient data for adapting the advanced method for derivation of the estimated of evaporation in the Daegu area. However, by using available data, the writer devoted his great effort in deriving the most reasonable formula applicable to the Daegu area and it is adaptable for various purposes such as industry and estimation of groundwater etc. The data used in this study was the monthly amount of evaporation of the Daegu area for the past 13 years(1960 to 1970). A year can be divided into two groups by relative degrees of evaporation in this area: the first group (less evaporation) is January, February, March, October, November, and December, and the second (more evaporation) is April, May, June, July, August, and September. The amount of evaporation of the two groups were statistically treated by the theory of probability for derivation of estimated formula of evaporation. The formula derved is believed to fully consider. The characteristic hydrological environment of this area as the following shows: log(x+3)=0.8963+0.1125$\xi$..........(4, 5, 6, 7, 8, 9 month) log(x-0.7)=0.2051+0.3023$\xi$..........(1, 2, 3, 10, 11, 12 month) This study obtained the above formula of probability of the monthly evaporation of this area by using the relation: $F_(x)=\frac{1}{{\surd}{\pi}}\int\limits_{-\infty}^{\xi}e^{-\xi2}d{\xi}\;{\xi}=alog_{\alpha}({\frac{x_0+b'}{x_0+b})\;(-b<x<{\infty})$ $$log(x_0+b)=0.80961$ $$\frac{1}{a}=\sqrt{\frac{2N}{N-1}}\;Sx=0.1125$$ $$b=\frac{1}{m}\sum\limits_{i-I}^{m}b_s=3.14$$ $$S_x=\sqrt{\frac{1}{N}\sum\limits_{i-I}^{N}\{log(x_i+b)\}^2-\{log(x_i+b)\}^2}=0.0791$$ (4, 5, 6, 7, 8, 9 month) This formula may be advantageously applied to estimation of evaporation in the Daegu area. Notation for general terms has been denoted by following: $W_(x)$: probability of occurance. $$W_(x)=\int_x^{\infty}f(x)dx$$ P : probability $$P=\frac{N!}{t!(N-t)}{F_i^{N-{\pi}}(1-F_i)^l$$ $$F_{\eta}:\; Thomas\;plot\;F_{\eta}=(1-\frac{n}{N+1})$$ $X_l\;X_i$: maximun, minimum value of total number of sample size(other notation for general terms was used as needed)

  • PDF

Generation of radar rainfall ensemble using probabilistic approach (확률론적 방법론을 이용한 레이더 강우 앙상블 생성)

  • Kang, Narae;Joo, Hongjun;Lee, Myungjin;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.155-167
    • /
    • 2017
  • Accurate QPE (Quantitative Precipitation Estimation) and the quality of the rainfall data for hydrological analysis are very important factors. Especially, the quality has a great influence on flood runoff result. It needs to know characteristics of the uncertainties in radar QPE for the reliable flood analysis. The purpose of this study is to present a probabilistic approach which defines the range of possible values or probabilistic distributions rather than a single value to consider the uncertainties in radar QPE and evaluate its applicability by applying it to radar rainfall. This study generated radar rainfall ensemble for the storms by the typhoon 'Sanba' on Namgang dam basin, Korea. It was shown that the rainfall ensemble is able to simulate well the pattern of the rain-gauge rainfall as well as to correct well the overall bias of the radar rainfall. The suggested ensemble technique represented well the uncertainties of radar QPE. As a result, the rainfall ensemble model by a probabilistic approach can provide various rainfall scenarios which is a useful information for a decision making such as flood forecasting and warning.

Application Testing and Comparative Effectiveness of Green-tide Mitigation Technique in the Lower Part (Chusori) of the So-ok Stream (Daecheong Reservoir), Korea (소옥천 하류(추소리)에서 녹조현상 경감기술의 현장 시험 적용 및 효과 비교)

  • Shin, Jae-Ki;Kim, Youngsung;Noh, Joonwoo;Kim, Jong-Myung;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.258-270
    • /
    • 2016
  • This study was conducted to test the green-tide mitigation technique in the lower part of the Sook Stream (Chusori) of Daecheong Reservoir from June 27 to August 24, 2014. And the effects were compared with weekly monitoring result of the watching station of the algae alert system (AAS) as well as test beds reach. The green-tide in a test bed was begun from the upstream, and it was gradually transferred and spread toward the downstream by the hydrological factors. The total amount of algae removed by algae removal device during the test period was 33,920 kg, and solids dewatered by natural gravity was 8,480 kg. Also chlorophyll-a content was 2.83 kg, the number of blue-green algae cells was equivalent to $78.6{\times}10^{14}$ cells. Compared with the results of the watching station of AAS, the pre-concentrate removal work in the outbreak waters was able to suggest the possibility of green-tide mitigation. In addition, an effective management of the green-tide was required spatial and temporal occurrence information and practical device technology. Particularly, the optimal timing of algae removal in the river-reservoir hybrid system was recommended at times before the monsoon rainy season and reached the lowest water level.