• Title/Summary/Keyword: hydrological characteristics

Search Result 476, Processing Time 0.023 seconds

Effect of watershed characteristics on the criteria of Flash Flood warning (유역인자의 특성이 경계경보발령 기준에 미치는 영향분석)

  • 양인태;김재철;김태환
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.389-392
    • /
    • 2004
  • A recent unusual change in the weather is formed as a localized heavy rain in a short time. This phenomenon has caused a flash flood, and flash floods extensively have damaged human lives many times. In large river's case, the extent of loss of lives and properties has been decreased through the flood warning system by flood control stations of each stream. However, the extent of damage in other small rivers has increased reversely. Therefore, it is necessary to establish a new flood warning system against flash floods instead of the existing flood warning system. It is a specific character that the damage from flash floods in mountain streams brings much more loss of lives than large river's flood. The purpose of this study is calculating the characteristic of flash floods in streams, analyzing topographical characteristics of water basin through applying GIS techniques with the calculation as mentioned above and researching what topographical conditions have influence on hydrological flash floods in water basin. The flash flood prediction model we used is made by GIUH (geomorphoclimatic instantaneous unit hydrograph) with hydrologic-topographical technology. As applying the flash flood prediction model, this is a procedure for calculating topographical information in basin: we made a topological data up out of database with utilizing GIS, and we also produced a DEM (digital elevation model) and used it as a topographical data for determining amount of flash floods.

  • PDF

Analysis of Soil Moisture Recession Characteristics in Conifer Forest (침엽수 산림에서의 토양수분 감쇄특성 분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Forest area covers 64 % of the national land of Korea and the forest plays a pivotal role in the hydrological process such as flood, drought, runoff, infiltration, evapotranspiration, etc. In this study, soil moisture monitoring for conifer forest in experimental forest of Seoul National University has been conducted using FDR (Frequency Domain Reflection) for 6 different soil layers, 10, 20, 30, 60, 90 and 120 cm during 2009~2010, and precipitation data was collected from nearby AWS (Automatic Weather Station). Soil moisture monitoring data were used to estimate soil moisture recession constant (SMRC) for analyzing soil moisture recession characteristics. From the results, empirical soil moisture recession equations were estimated and validated to determine the feasibility of the result, and soil moisture contents of measured and calculated showed a similar tendency from April to November. Thus, the results can be applied for soil moisture estimation and provided the basic knowledge in forest soil moisture consumption. Nevertheless, this approach demonstrated applicability limitations during winter and early spring season due to freezing and melting of snow and ice causing peculiar change of soil moisture contents.

A Study on the Master Plan of Natural Environment Conservation compared with National Biological Survey in USA (환경부 전국자연환경조사사업의 문제점과 개선방안 - 미국의 사례를 중심으로 -)

  • Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The Master Plan of Natural Environment Conservation in Korea by Ministry of Environment has been carried out since 1986. The 2nd 10-year survey started in 1997, and there are three major parts in the Master Plan : First, the basic natural environment survey, second, sites in special features of ecological characteristics such as uninhabitable islands, wetlands, etc, and third, biological species featuring status of habitat, and population dynamics. However the information in the Master Plan is very fragmented and collected data are not so abundant due to insufficient man-power and unsynchronized survey time/season. In this regard this paper examined the similar National Biological Survey in USA and compared the differences with the Master Plan in Korea. The Master Plan in Korea should separate the management zone based on hydrological characteristics, and in each zone we should set a management goal in the long term basis. Secondly the species list is not so meaningful that we must concentrate more on research activities. In each taxonomical group we set up hypotheses and research goals. Thirdly local residents and communities should be involved in research so that enhanced biological diversity should benefit people in areas. Lastly legislation and laws should be reexamined and rectified to provide information to the managers that deals with natural resources, expecially when conflicting with economic matters.

Runoff Characteristics in Paddy Field using Cow Manure Compost Fertilizer (우분 퇴비를 시용한 논에서의 유출수 특성)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Yoon, Kwang-Sik;Lee, Hyun-Jeong;Kim, Young-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.29-36
    • /
    • 2012
  • This study was carried out to investigate the runoff characteristics in paddy field using livestock compost fertilizer. Irrigation, runoff and water quality data in the paddy field were analyzed periodically from May to September in 2011. The observed amounts of rainfall, irrigation, runoff for the experimental paddy field during the irrigation period were 1,148.2 mm, 523.9 mm, and 344.7 mm, respectively. T-N concentrations ranged from 2.28 mg/L to 11.75 mg/L, which was generally higher than the quality standard of agricultural water (1.0 mg/L). T-P concentrations ranged from 0.018 mg/L to 0.241 mg/L and the average was 0.122 mg/L. The runoff loads of T-N and T-P were 15.7 kg/ha and 0.4 kg/ha, respectively. The runoff pollutants loadings in T-N and T-P in this study were much lower values than the loads of T-N and T-P from the paddy field presented by others' studies. We are considering that these results were affected by rainfall as well as hydrological condition, irrigation water, fertilizer application, rice straw and plowing.

Determination of Design-Width for Medium Rivers of Central Area in Korea (우리나라 中部地方의 中小河川에 대한 計劃河幅의 算定)

  • 안상진;권봉희
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.139-147
    • /
    • 1996
  • The stream morphological characteristics of river basin has a close correlation with the hydrological and hydraulic characteristics of the basin. This study was conducted to suggest a river width formula for medium rivers of central area in Korea. As a result, The following conclusions are made: (1) The model for the stream-width to be applied to the medium rivers of central area in Korea is developed as suggestion model-a function of the design flood discharge-of which the formula is $B=1.532A^{0.644.}$; (2) The model for the stream-sidth to be applied to the medium rivers of central area in Korea is developed as suggestion model-a function of the watershed Area-of which the formula is $B=12.392A^{0.511}$; (3) The model for the stream-width to be applied to the medium rivers of central area in Korea is developed as suggestion model-a function of the stream length of which the formual is $B=10.509l^{0.852}$.

  • PDF

Techniques to Estimate Permeability Based on Spectral Induced Polarization Survey (광대역유도분극 탐사에 기초한 유체투과도 예측기법들)

  • Kim, Bitnarae;Cho, AHyun;Weller, Andreas;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.55-69
    • /
    • 2020
  • Permeability-analyzing methods commonly involve small-scale drilling, such as pumping or slug test, but it is difficult to identify overall distribution of permeability of the entire target sites due to high cost and time requirement. Spectral induced polarization (SIP) method is known to be capable of providing distributions of both the porosity and the pore size, the two major parameters determining permeability of the porous medium. The relationship between SIP variables and permeability has been studied to identify the hydrological characteristics of target sites. Kozeny-Carman formula has been improved through many experiments to better predict fluid permeability with electrical properties. In this work, the permeability prediction techniques based on SIP data were presented in accordance with the hydrogeological and electrical characteristics of a porous medium. Following the summary of the techniques, various models and related laboratory experiments were analyzed and examined. In addition, the field applicability of the prediction model was evaluated by field case analysis.

Characteristics of Storm Runoff and Analysis of Its Correlation with Forest Properties (산림특성에 따른 강우유출수 유출특성 및 상관관계 분석)

  • Chung, WooJin;Chang, SoonWoong
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1007-1016
    • /
    • 2016
  • Environmental policy implementation has been strengthened to protect the source waters in Korea and to improve their water quality. Increasing of non-point source caused water quality problem continuously. Research on runoff from forests, which occupy over 65% of the land in korea, is insufficient, and studies on the characteristics and influences of storm runoff are necessary. In this study, we chose to compare the effects of land use in the form of two types of forest distribution and then gathered data on storm characteristics and runoff properties during rainfall events in these areas. Furthermore, the significance and influences of the discharges were analyzed through correlation analysis, and multilateral runoff characteristics were examined by deducing a formula through $COD_{Mn}$ and TOC regression analysis. At two forest points, for which the basin areas differed from each other, flow changed according to storm quantity and intensity. The peak discharge at point A, where the basin area was big, was high, whereas water-quality fundamental items (BOD, $COD_{Mn}$, and SS) and TOC density were high at point B where the slope and storm intensity were high. Effects of dissolved organic matter were determined through correlation analysis, and the regression formulas for $COD_{Mn}$ and TOC were deduced by regression analysis. It is expected that the data from this study could be useful as basic information in establishing forest management measures.

Analysis of Secular Changes in the Hydrological Characteristics of a Small Forested Watershed using a Baseflow Recession Curve (감수곡선을 이용한 산림소유역 유출특성의 시계열 변화 평가)

  • Lee, Ik-Soo;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.383-391
    • /
    • 2014
  • Long-term changes in the hydrological characteristics of a small forest watershed were examined using a master baseflow recession curve and the measured rainfall-runoff data from the experimental forest watershed in the measured years 2003-2011. The results of the study showed that the recession coefficient of direct runoff was lower than that of baseflow. In small forested watershed, the direct flow was lower than that of large scale watershed, flow due to its shorter period of occurrence. And baseflow was similar to large scale watershed's. A regression equation $y=0.7528e^{-0.022x}$($R^2=0.8938$, range 0.3~0.8 mm) was obtained using the master baseflow recession curve for the study period and the recession coefficient was calculated as K = 0.978. Changes between master baseflow recession curve and runoff showed great association and relevance such as increasing runoff was associated with the gentle slope of master baseflow recession curve and decreasing runoff was associated with the slope of master baseflow recession curve contrary. In the later years of the study period, the slope of the master baseflow recession curve appreciably became more gentle due to increases in baseflow. This suggests that the forested experimental watershed exhibit improved structural functioning of normal flood control and reduced occurrence of water shortage problems.

Prediction of the Area Inundated by Lake Effluent According to Hypothetical Collapse Scenarios of Cheonji Ground at Mt. Baekdu (백두산 천지 붕괴 가상 시나리오 별 천지못 유출수의 피해영향범위 예측)

  • Suh, Jangwon;Yi, Huiuk;Kim, Sung-Min;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.409-425
    • /
    • 2013
  • This study presents a prediction of a time-series of the area inundated by effluent from Heavenly Lake caused by ground behavior prior to a volcanic eruption. A GIS-based hydrological algorithm that considers the multi-flow direction of effluent, the absorption and storage capacity of the ground soil, the storage volume of the basin or the depression terrain, was developed. To analyze the propagation pattern, four hypothetical collapse zones on the cheonji ground were set, considering the topographical characteristics and distributions of volcanic rocks at Mt. Baekdu. The results indicate that at 3 hours after collapse, for both scenarios 1 and 2 (collapses of the entire/southern boundary of cheonji), a flood hazard exists for villages in China, but not for those on the North Korean side of the mountain, due to the topographical characteristics of Mt. Baekdu. It is predicted that villages in both North Korea and China would be significantly damaged by flood inundation at 3 hours elapsed time for both scenarios 3 and 4 (collapses on the southern boundary of cheonji and on the southeastern-peak area).

Hydrological Characteristics of Subsurface Stormflow through Soil Matrix and Macropores on forested Hillslopes (산지 사면에서 토양체와 대공극을 통해 발생하는 지표하 호우류의 수문학적 특성)

  • Kim, Kyong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.777-785
    • /
    • 1997
  • This study was conducted to clarify the hydrological characteristics of subsurface flow through a soil matrix and macropores. The research facility was set up in a 20m-1ong trench excavated down to bedrock at the base of a hillslope in the Panola catchment under USGS Georgia district. 13 macropores were found on the trench face and 6 major macropores were monitored. Matrix and macropore flow were measured during 95.5mm rainfall on March, 6 to 7. 1996. Macropore flow had great influence on formation of peak flow because the delivery time to Peak flow of macropore flow were faster about 10hrs than those of matrix flow. Matrix flow continued to recess for 3 days. On the other hand, macropore flow stopped within 12hrs after the event ceased. This means that matrix flow controls the recession part. The spatial variations of matrix and macropore flow between each trough and collector were very large by a wide range of 8,655.3 $\ell$ to 17.8 $\ell$ . The bed rock surface topography relates closer with the spatial variations of the flow than the surface one.

  • PDF