• 제목/요약/키워드: hydrokinetic energy

검색결과 8건 처리시간 0.026초

Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria

  • Adeogun, Adeniyu Ganiyu;Ganiyu, Habeeb Oladimeji;Ladokun, Laniyi Laniran;Ibitoye, Biliyamin Adeoye
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.267-273
    • /
    • 2020
  • This Hydrokinetic energy system is the process of extracting energy from rivers, canals and others sources to generate small scale electrical energy for decentralized usage. This study investigates the application of Soil and Water Assessment Tool (SWAT) in Geographical Information System (GIS) environment to evaluate the theoretical hydrokinetic energy potentials of selected Rivers (Asa, Awun and Oyun) all in Asa watershed, Kwara state, Nigeria. SWAT was interfaced with an open source GIS system to predict the flow and other hydrological parameters of the sub-basins. The model was calibrated and validated using observed stream flow data. Calibrated flow results were used in conjunction with other parameters to compute the theoretical hydrokinetic energy potentials of the Rivers. Results showed a good correlation between the observed flow and the simulated flow, indicated by ash Sutcliffe Efficiency (NSE) and R2 of 0.76 and 0.85, respectively for calibration period, and NSE and R2 of 0.70 and 0.74, respectively for the validation period. Also, it was observed that highest potential of 154.82 MW was obtained along River Awun while the lowest potential of 41.63 MW was obtained along River Asa. The energy potentials obtained could be harnessed and deployed to the communities around the watershed for their energy needs.

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

Optimization of a Savonius hydrokinetic turbine for performance improvement: A comprehensive analysis of immersion depth and rotation direction

  • Mafira Ayu Ramdhani;Il Hyoung Cho
    • Ocean Systems Engineering
    • /
    • 제14권2호
    • /
    • pp.141-156
    • /
    • 2024
  • The turbine system converts the kinetic energy of water flow to electricity by rotating the rotor in a restricted waterway between the seabed and free surface. A turbine system's immersion depth and rotation direction are significantly critical in the turbine's performance along with the shape of the rotor. This study has investigated the hydrodynamic performance of the Savonius hydrokinetic turbine (SHT) according to the immersion depth and rotation direction using computational fluid dynamics (CFD) simulations. The instantaneous torque, torque coefficient, and power coefficients are calculated for the immersion ratios Z/D ranging [0.25, 3.0] and both clockwise (CW) and counterclockwise (CCW) rotations. A flow visualization around the rotor is shown to clarify the correlation between the turbine's performance and the flow field. The CFD simulations show that the CCW rotation produces a higher power at shallow immersion, while the CW rotation performs better at deeper immersion. The immersion ratio should be greater than the minimum of Z/D=1.0 to obtain the maximum power production regardless of the rotation direction.

상호작용과 확산 효과를 이용한 다리우스 유체동력 터빈의 성능 향상 (Performance Improvement of a Darrieus Hydrokinetic Turbine by Interaction and Diffusion Effects)

  • 정다솜;박진순;고진환
    • Ocean and Polar Research
    • /
    • 제46권1호
    • /
    • pp.83-92
    • /
    • 2024
  • In this study, first, we adopted a twin configuration of a Darrieus hydrokinetic turbines that can bring about an improvement in efficiency through positive interaction and obtained the optimal shape through parametric analysis of the small-scale turbine model by computational fluid dynamic simulations. Next, the effect of performance improvement was examined for symmetrical and asymmetrical ducts. The results show that the asymmetrical duct that utilizes diffusion effects has a comparative advantage in terms of efficiency and drag over the symmetrical one. However, the advantage of the Darrieus turbine, which has flow-directional independency, is lost in the case of the presented configuration; thus, we introduced the idea of a passive yaw-controller that adapts to the variation of the flow-direction that does not require additional energy consumption. In conclusion, such efforts and adjustments to enhance the performance of the Darrieus turbine by utilizing the interaction and diffusion effects discussed in this study will be helpful in securing competitiveness against other types of hydrokinetic turbines.

A Study on Power Performance of a 1kW Class Vane Tidal Turbine

  • Yang, Changjo;Nguyen, Manh Hung;Hoang, Anh Dung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.143-151
    • /
    • 2015
  • Recently, tidal current energy conversion is a promising way to harness the power of tides in order to meet the growing demands of energy utilization. A new concept of tidal current energy conversion device, named Vane Tidal Turbine (VTT), is introduced in this study. VTT has several special features that are potentially more advantageous than the conventional tidal turbines, such as propeller type tidal turbines. The purpose of this study on VTT is to analyze the possibility of extracting the hydrokinetic energy of tidal current and converting it into electricity, and evaluate the performance of turbines for various numbers of blades (six, eight and twelve) using Computational Fluid Dynamics (CFD). At various tip-speed ratios (TSR), the six-bladed turbine obtains the highest power and torque coefficients, power efficiency is up to 28% at TSR = 1.89. Otherwise, the twelve blade design captures the smallest portion of available tidal current energy at all TSRs. However, by adding more blades, torque extracted from the rotor shaft of twelve-bladed turbine is more uniform due to the less interrupted generation of force for a period of time (one revolution).

Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms

  • Tian, Wenlong;Song, Baowei;VanZwieten, James H.;Pyakurel, Parakram;Li, Yanjun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.73-82
    • /
    • 2016
  • In order to extend the operational life of Underwater Moored Platforms (UMPs), a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD) simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS) equations and the shear stress transport ${\kappa}-{\omega}$ turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.

블레이드 열의 배치에 따른 베인형 조류 수차의 성능 비교 (A Comparison of Performance of Six and Twelve-Blade Vane Tidal Turbines between Single and Double Blade-row Types)

  • 웬만훙;김준호;김부기;양창조
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.51-58
    • /
    • 2015
  • This paper presents a study on Vane Tidal Turbine (VTT) focusing on analysis of two types of blade arrangement originated from the previous studies where the original design was examined and performance-tested for different numbers of blades (six, eight and twelve). Compared to conventional tidal turbines, VTT has several special features and potential advantages which have been being thoroughly developed. The purpose of this study is to analyze VTT's capability of extracting and converting the hydrokinetic energy of tidal currents into electricity at given arrangement of blades (single and double rows, six and twelve blades) using CFD. From the calculation results, the six-blade single row turbine shows the best performance, in which the highest power and torque coefficients reach up to about 34 % and 36 %, respectively, at TSR=0.94. However, despite of lower power coefficient, by adding more blades, the torque's extraction of twelve-blade turbine, especially the double row type, is less fluctuate than that of the six-blade setups.

마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구 (Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study)

  • 삼수딘 모하메드 무르시드;김승준;마상범;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.