• Title/Summary/Keyword: hydrogenated

Search Result 437, Processing Time 0.032 seconds

Physical properties and electrical characteristic analysis of silicon nitride deposited by PECVD using $N_2$ and $SiH_4$ gases ($N_2$$SiH_4$ 가스를 사용하여 PECVD로 증착된 Silicon Nitride의 물성적 특성과 전기적 특성에 관한 연구)

  • Ko, Jae-Kyung;Kim, Do-Young;Park, Joong-Hyun;Park, Sung-Hyun;Kim, Kyung-Hae;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.83-87
    • /
    • 2002
  • Plasma enhanced chemical vapor deposited (PECVD) silicon nitride ($SiN_X$) is widely used as a gate dielectric material for the hydrogenated amorphous silicon(a-Si:H) thin film transistors (TFT's). We investigated $SiN_X$ films were deposited PECVD at low temperature ($300^{\circ}C$). The reaction gases were used pure nitrogen and a helium diluted of silane gas(20% $SiH_4$, 80% He). Experimental investigations were carried out with the variation of $N_2/SiH_4$ flow ratios from 3 to 50 and the rf power of 200 W. This article presents the $SiN_X$ gate dielectric studies in terms of deposition rate, hydrogen content, etch rate and C-V, leakage current density characteristics for the gate dielectric layer of thin film transistor applications. Electrical properties were analyzed through high frequency (1MHz) C-V and current-voltage (I-V) measurements. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment.

  • PDF

Atomic bonding structure in the a-C:H thin films prepared by ECR-PECVD (ECR-PECVD 방법으로 제조한 a-C:H 박막의 결합구조)

  • 손영호;정우철;정재인;박노길;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.382-388
    • /
    • 2000
  • Hydrogenated amorphous carbon (a-C:H) films were fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition. The bonding structure of carbon and hydrogen in the a-C:H films has been investigated by varying the deposition conditions such as ECR power, gas composition of methane and hydrogen, deposition time, and negative DC self bias voltage. The bonding characteristics of the a-C:H thin film were analyzed using FTIR spectroscopy. The IR absorption peaks of the film were observed in the range of $2800\sim3000 \textrm{cm}^{-1}$. The atomic bonding structure of a-C:H film consisted of $sp^3$ and $sp^2$ bonding, most of which is composed of $sp^3$ bonding. The structure of the a-C:H films changed from $CH_3$ bonding to $CH_2$ or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased.

  • PDF

$CH_4$$N_2$ 가스 혼합비에 따른 a-C:H:N 박막의 물성 연구

  • 유영조;김효근;오재석
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.94-94
    • /
    • 1998
  • 최근 a-CH:N (hydrogenated amorphous carbon nitride)가 a-CH 보다 팡학적, 기계객성 질이 우수하므로 이에 대한 연구가 활발하게 진행되고 있다. 본 실험에선 원료 가스의 유량 은 5 sccm으로 고정시킨 채 원료가스내의 질소 대 메탄 혼합비 (N2ICHa)훌 O 에서 4 까지 변 화시 키 띤서 DC saddle-field PECVD (plasma enhanced chemical vapour d야Xlsition)훌 이 용하여 a-CH:N 박막융 제작하여, 가스 혼합비가 박막의 미세구조와 광학척 성질에 미치는 영향올 연구하였다. 박막 성장시 진공조 내의 압력온 throttle valve롤 사용하여 90 mTorr로 일정하게 유지하였으며 양극 전압과 기판전업은 각각 500 V, 200 V로 고청하고 상온에서 중 착하였다. a a -step으로 측정 한 a-C:H:N 박막의 두께는 혼합가스내의 질소의 양이 증가할수륙 4800 A에서 2000 A로 두께가 감소하였지만 표면 rot핑비less는 혼합가스내의 질소의 양이 중가할 수록 중가함을 AFM (atomic force mi$\alpha$'0 scopy) 으로 관찰하였다. 박막내의 C와 N의 정량 분석은 RES (Rutherford back scattering s야ctroscopy) 핵공명법을 이용하여 분석하였다. X XPS (X -ray photoelectron spec$\sigma$oscopy) 와 FT-IR (Fo삐er transform-infrared s spectrometry)로 미세구조률 측정한 결과 혼합가스내의 질소의 양이 충가할수록 C-H기는 감 소하였지 만 C르N, N-H기 는 늘어 났다. 또한 PL (photoluminescence) 측정 결과 웬료가스 내 메탄과 질소의 비율이 1:1일 때 최대의 발광올 보였고 UVS (비없 vi이et spec$\sigma$orne$\sigma$y)으 로 측정한 광학쩍 에너지 캡은 혼합비내의 질소의 양이 증가할수록 2.53 eV에서 2.3 eV로 감 소하였다. 이를 결과로부터 원료가스내의 N2ICHa의 중가에 따른 박막의 미세구조 변화와 광학척 생 질의 상관 관계가 고찰될 것이다.

  • PDF

Control of Plasma Characteristic to Suppress Production of HSRS in SiH4/H2 Discharge for Growth of a-Si: H Using Global and PIC-MCC Simulation

  • Won, Im-Hui;Gwon, Hyeong-Cheol;Hong, Yong-Jun;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.312-312
    • /
    • 2011
  • In SiH4/H2 discharge for growth process of hydrogenated amorphous silicon (a-Si:H), silane polymers, produced by SiH2 + Sin-1H2n ${\rightarrow}$ SinH2n+2, have no reactivity on the film-growing surface. However, under the SiH2 rich condition, high silane reactive species (HSRS) can be produced by electron collision to silane polymers. HSRS, having relatively strong reactivity on the surface, can react with dangling bond and form Si-H2 networks which have a close correlation with photo-induced degradation of a-Si:H thin film solar cell [1]. To find contributions of suggested several external plasma conditions (pressure, frequency and ratio of mixture gas) [2,3] to suppressing productions of HSRS, some plasma characteristics are studied by numerical methods. For this study, a zero-dimensional global model for SiH4/H2 discharge and a one-dimensional particle-in-cell Monte-Carlo-collision model (PIC-MCC) for pure SiH4 discharge have been developed. Densities of important reactive species of SiH4/H2 discharge are observed by means of the global model, dealing 30 species and 136 reactions, and electron energy probability functions (EEPFs) of pure SiH4 discharge are obtained from the PIC-MCC model, containing 5 charged species and 15 reactions. Using global model, SiH2/SiH3 values were calculated when pressure and driving frequency vary from 0.1 Torr to 10 Torr, from 13.56 MHz to 60 MHz respectively and when the portion of hydrogen changes. Due to the limitation of global model, frequency effects can be explained by PIC-MCC model. Through PIC-MCC model for pure SiH4, EEPFs are obtained in the specific range responsible for forming SiH2 and SiH3: from 8.75 eV to 9.47 eV [4]. Through densities of reactive species and EEPFs, polymerization reactions and production of HSRS are discussed.

  • PDF

PECVD를 이용한 광 흡수층에서의 Germane 유량변화가 a-SiGe:H 박막 태양전지에 미치는 영향

  • Son, Won-Ho;Kim, Ae-Ri;Ryu, Sang-Hyeok;Choe, Si-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.157-157
    • /
    • 2011
  • 박막형태로 제작이 가능한 비정질 실리콘은 결정질 실리콘에 비하여 AM-1 (Air Mass 1:100mW/cm2)조건하에서 10-3 S/cm 정도의 높은 광전기전도도와 가시광선 영역($4000{\sim}7000{\AA}$)에서 약 10배의 높은 광흡수계수를 가지며, $300^{\circ}C$ 이하의 낮은 기판온도에서 다양한 기판위에 대면적으로 제작이 가능할 뿐만 아니라 제작공정이 단순하여 제작비용이 저렴하다는 이점이 있다. 본 실험에서 제작된 모든 박막은 PECVD로 증착하였으며 구조는 p-i-n superstrate형 구조를 사용하였고, 각 박막의 두께는 p-a-Si:H/i-a-SiGe:H/n-a-Si:H ($300{\AA}/2000{\AA}/600{\AA}$)으로 고정하였다. a-Si:H (hydrogenated amorphous silicon) 태양전지의 광 흡수층인 i-layer에서의 germane 가스 유량 변화(0, 20, 40. 60, 80, 100 sccm)에 대한 흡수율의 차이를 UV/Vis/Nir spectrophotometer (ultraviolet/visible/near infrared spectrophotometer)를 통해 확인하고, 그에 따른 a-Si:H 박막 태양전지를 제작하여 solar simulator를 사용하여 AM 1.5 G의 환경 조건에서 태양전지 특성을 평가하였다. 그 결과 germane 가스 유량이 증가함에 따라 파장에 대한 absorptance (a.u.)값이 증가함을 알 수 있었으며, 흡수되는 파장영역의 범위가 장파장으로 확대됨을 확인할 수 있었다. 또한 germane 가스 유량이 60 sccm 일때 a-SiGe:H 박막 태양전지 변환효율이 3.80%로 최대값을 가졌다. 실험에서 germane 가스 유량이 증가할수록 흡수율이 높아져 태양전지특성이 향상될 거라 예상 했지만, 100 sccm보다 60 sccm일 때가 단락전류밀도 값과 변환효율이 높다는 것을 확인할 수 있었다. 이는 각 layer사이에 계면상의 문제가 있을 거라 예상되며 직렬저항측정을 통해 확인할 수 있다.

  • PDF

Development of Lecithin Organogel to Improve Solubility of Genistein (레시틴 오가노겔을 이용한 난용성 제니스테인의 용해도 향상)

  • Lee, Su Jin;Kim, Jung A;Kang, Nae Gyu;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2015
  • Organogels are semi-solid systems that consist of an apolar solvent as the liquid phase within a three-dimensional networked structure. In this study, we developed a stable and skin penetration-enhanced Lecithin Organogel (LO) containing genistein, which is one of the poorly soluble active ingredients in both polar and apolar phase. After screening of various components (type of gelators, organic and aqueous phase), hydrogenated lecithin (HL), sunflower oil (SO), dipropylene glycol (DPG), and polyethylene glycol (PEG) were mainly used in this formulation. Phase ternary diagram was employed for optimization of the composition in the LO. The formulated LO were evaluated for its organoleptic characteristics, stability, pH, rheology, phase transition temperatures, microscopic analysis and skin penetration. The optimized stable LO system can be utilized as an effective and stable cosmetic formulation that can carry poorly soluble active ingredients at high concentration for topical dermal delivery.

Properties of Silicon Nitride Deposited by LF-PECVD with Various Thicknesses and Gas Ratios (가스비와 두께 가변에 따른 실리콘질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Lee, Hi-Deok;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.154-157
    • /
    • 2011
  • Hydrogenated silicon nitride deposited by LF-PECVD is commonly used for anti-reflection coating and passivation in silicon solar cell fabrication. The deposition of the optimized silicon nitride on the surface is elemental in crystalline silicon solar cell. In this work, the carrier lifetimes were measured while the thicknesses of $SiN_x$ were changed from 700 ${\AA}$ to 1150 ${\AA}$ with the gas flow of $SiH_4$ as 40 sccm and $NH_3$ as 120 sccm,. The carrier lifetime enhanced as the thickness of $SiN_x$ increased due to improved passivation effect. To study the characteristics of $SiN_x$ with various gas ratios, the gas flow of $NH_3$ was changed from 40 sccm to 200 sccm with intervals of 40 sccm. The thickness of $SiN_x$ was fixed as 1000 ${\AA}$ and the gas flow of $SiH_4$ as 40 sccm. The refractive index of SiNx and the carrier lifetime were measured before and after heat treating at $650^{\circ}C$ to investigate their change by the firing process in solar cell fabrication. The index of refraction of SiNx decreased as the gas ratios increased and the longest carrier lifetime was measured with the gas ratio $NH_3/SiH_4$ of 3.

  • PDF

The Study on Characteristics of a-C:H Films Deposited by ECR Plasma (전자회전공명 플라즈마를 이용한 a-C:H 박막의 특성 연구)

  • 김인수;장익훈;손영호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.224-231
    • /
    • 2001
  • Hydrogenated amorphous carbon films were deposited by ERC-PECVD with deposition conditions, such as ECR power, gas composition of methane and hydrogen, deposition time, and substrate bias voltage. The characteristics of the film were analyzed using the AES, ERDA, FTIR. Raman spectroscopy and micro hardness tester. From the results of AES and ERDA, the elements in the deposited film were confirmed as carbon and hydrogen atoms. FTIR spectroscopy analysis shows that the atomic bonding structure of a-C:H film consisted of sp³and sp²bonding, most of which is composed of sp³bonding. The structure of the a-C:H films changed from CH₃bonding to CH₂or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased. Raman scattering analysis shows that integrated intensity ratio (I/sub D//I/sub G/) of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased.

  • PDF

Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates (유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조)

  • Jang, Eunseok;Kim, Sol Ji;Lee, Ji Eun;Ahn, Seung Kyu;Park, Joo Hyung;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

Kinetics and Statistics of Structural Changes in Polyacrylonitrile (폴리아크릴로니트릴의 構造變化에 있어서의 動力學的 및 統計學的 硏究)

  • Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 1966
  • It is well known that the coloration and structural changes in thermal treatment of polyacrylonitrile are due to the formation of partly hydrogenated naphthylidine-type ring involving the pendant nitrile groups. Any quantitative study of the reaction, in the sense of kinetics and/or statistics, however, has never been reported. This paper presents that, at first, the disappearance of the nitrile groups follows the first order kinetics, which indicates clearly that nitrile groups do not disappear by a long chain reaction-the kinetic chain length is very short. This observation rules out the long intramolecular and intermolecular propagation chain through which most of the nitrile groups disappear. From the evidence that a similar reaction occurs in propylene carbonate solutions without gel formation, one may conclude that the coloration and structural changes are not necessarily intermolecular reaction. Secondly, a finite amount of nitrile groups remains unreacted at the extrem of reaction-not contributed to the formation of naphthylidine-type ring. The concentration of this unreacted nitrile groups is 19∼22% which is good agreement with the statistically calculated value of 19.2%.

  • PDF