• Title/Summary/Keyword: hydrogen trap

Search Result 52, Processing Time 0.019 seconds

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

Effect of Post-Metallization Anneal (PMA) on Interface Trap Density of Si-$SiO_2$ (금속후 어닐링 방법이 Si-$SiO_2$ 계면 전하 농도에 미치는 영향)

  • Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.157-158
    • /
    • 2007
  • Effects of post-metallization anneal (PMA) on interface trap characteristics of Si-$SiO_2$ are studied. The conventional PMA method utilizes forming gas anneal, where 10% hydrogen in nitrogen atmosphere is used. A new PMA method utilizes hydrogen rich PECVD- silicon nitride $(SiN_x)$ film as a hydrogen diffusion source and a out-diffusion blocking layer. It can be shown through charge pumping current measurement that the new PMA is indeed effective to decrease Si-$SiO_2$ interface trap density.

  • PDF

Influence of Trap Passivation by Hydrogen on the Electrical Properties of Polysilicon-Based MSM Photodetector

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.316-319
    • /
    • 2017
  • A new approach to improving the electrical characteristics and optical response of a polysilicon-based metal-semiconductor-metal (MSM) photodetector is proposed. To understand the cause of current restriction in the MSM photodetector, modified trap mechanisms are suggested, which include interfacial electron traps at the metal/polysilicon interface and silicon dangling bonds between silicon crystallite grains. Those traps were passivated using hydrogen ion implantation with subsequent post-annealing. Photodetectors that were ion-implanted under optima conditions exhibited improved photoconductivity and reduced dark current instability, implying that the hydrogen bonds in the polysilicon influence the simultaneous decreases in the density of dangling bonds at grain boundaries and the trapped positive charges at the contact interface.

Effect of Microstructure Control of High-Strength Steel on Hydrogen Diffusivity, Trap Activation Energy, and Cracking Resistance in Sour Environments (고강도강의 미세조직 제어가 수소확산계수, 트랩 활성화에너지 및 Sour 환경 내 균열 저항성에 미치는 영향)

  • Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.131-136
    • /
    • 2023
  • The aim of this study was to investigate effects of microstructure control on hydrogen diffusivity, trap activation energy, and cracking behaviors of high-strength steel using a range of experimental techniques. Results of this study showed that susceptibility to hydrogen induced cracking (HIC) was significantly associated with hydrogen diffusivity and trap activation energy, which were primarily influenced by the microstructure. On the other hand, microstructural modifications had no significant impact on electrochemical polarization behavior on the surface at an early corrosion stage. To ensure high resistance to HIC of the steel, it is recommended to increase the cooling rate during normalizing to avoid formation of banded pearlite in the microstructure. However, it is also essential to establish optimal heat treatment conditions to ensure that proportions of bainite, retained austenite (RA), and martensite-austenite (MA) constituents are not too high. Additionally, post-heat treatment at below A1 temperature is desired to decompose locally distributed RA and MA constituents.

The Effect of Hydride Phase on the Hydrogen Sorption Properties of the Non-Evaporable Ti0.3Zr0.2V0.5 Getter Alloy (Ti0.3Zr0.2V0.5 합금의 수소흡수 특성에 미치는 수소화물의 영향)

  • Lee Dongjin;Park Jeshin;Suh Changyoul;Lee Jaechun;Kim Wonbaek
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.306-312
    • /
    • 2005
  • The hydrogen sorption properties of $Ti_{0.3}Zr_{0.2}V_{0.5}$ NEC(non-evaporable getter) alloy and its hydrides were evaluated at room temperature. The alloy and hydride powders were prepared by the Hydride-DeHydride(HDH) method. The hydrogen sorption speed of $Ti_{0.3}Zr_{0.2}V_{0.5}$ alloy was measured to increase with the amounts of hydride phase in the getter. The hydrogen sorption speeds of $Ti_{0.3}Zr_{0.2}V_{0.5},\;(Ti_{0.3}Zr_{0.2}V_{0.5})H_{1.52},\;and\;(Ti_{0.3}Zr_{0.2}V_{0.5})H_{1.94}$ were 2.22, 3.14 and 5.08 liter/sec, respectively. The unexpected enhancement of hydrogen sorption speed with the presence of the hydride phase is considered to be due to the pre-saturation of hydrogen trap sites which can retard the diffusion of hydrogen in the alloy.

Trap Generation during SILC and Soft Breakdown Phenomena in n-MOSFET having Thin Gate Oxide Film (박막 게이트 산화막을 갖는 n-MOSFET에서 SILC 및 Soft Breakdown 열화동안 나타나는 결함 생성)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.1-8
    • /
    • 2004
  • Experimental results are presented for gate oxide degradation, such as SILC and soft breakdown, and its effect on device parameters under negative and positive bias stress conditions using n-MOSFET's with 3 nm gate oxide. The degradation mechanisms are highly dependent on stress conditions. For negative gate voltage, both interface and oxide bulk traps are found to dominate the reliability of gate oxide. However, for positive gate voltage, the degradation becomes dominated mainly by interface trap. It was also found the trap generation in the gate oxide film is related to the breakage of Si-H bonds through the deuterium anneal and additional hydrogen anneal experiments. Statistical parameter variations as well as the “OFF” leakage current depend on both electron- and hole-trapping. Our results therefore show that Si or O bond breakage by tunneling electron and hole can be another origin of the investigated gate oxide degradation. This plausible physical explanation is based on both Anode-Hole Injection and Hydrogen-Released model.

Degradation of Ultra-thin SiO2 film Incorporated with Hydrogen or Deuterium Bonds during Electrical Stress (수소 및 중수소가 포함된 실리콘 산화막의 전기적 스트레스에 의한 열화특성)

  • Lee, Jae-sung;Back, Jong-mu;Jung, Young-chul;Do, Seung-woo;Lee, Yong-hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.996-1000
    • /
    • 2005
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide $(SiO_2)$ under both Negative-bias Temperature Instability (NBTI) and Hot-carrier-induced (HCI) stresses using P and NMOSFETS, The devices are annealed with hydrogen or deuterium gas at high-pressure $(1\~5\;atm.)$ to introduce higher concentration in the gate oxide. Both interface trap and oxide bulk trap are found to dominate the reliability of gate oxide during electrical stress. The degradation mechanism depends on the condition of electrical stress that could change the location of damage area in the gate oxide. It was found the trap generation in the gate oxide film is mainly related to the breakage of Si-H bonds in the interface or the bulk area. We suggest that deuterium bonds in $SiO_2$ film are effective in suppressing the generation of traps related to the energetic hot carriers.

A study on the identification of the weld defects and hydrogen embrittlement in heat affected zone of AISI 5160 spring steel using thermal analysis technique (열분석 방법을 이용한 AISI 5160스프링강의 용접시 Heat Affected Zone에서의 결합규명과 수소취성에 관한 연구)

  • 김민태;이재영
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 1987
  • To explore the possible application of thermal analysis technique as a probe for finding weld defects, Hydrogen trapping phenomena in Heat Affected Zone (HAZ) of the AISI 5160 spring steel were investigated. HAZ was divided into five parts, which were used as thermal analysis specimens. Two types of trap sites were found in HAZ, ferrite/cementin interface and microvoid. The thermal analysis peak due to the ferrite/cementite interface increased its height toward the weld deposit. The thermal analysis peak due to the microvoid was the highest where the grain size was the smallest. The correspondence between the cold cracking and hydrogen trap nature is also discussed.

  • PDF

Effect of Hydrogen Treatment on Electrical Properties of Hafnium Oxide for Gate Dielectric Application

  • Park, Kyu-Jeong;Shin, Woong-Chul;Yoon, Soon-Gil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Hafnium oxide thin films for gate dielectric were deposited at $300^{\circ}C$ on p-type Si (100) substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed in $O_2$ and $N_2$ ambient at various temperatures. The effect of hydrogen treatment in 4% $H_2$ at $350^{\circ}C$ for 30 min on the electrical properties of $HfO_2$for gate dielectric was investigated. The flat-band voltage shifts of $HfO_2$capacitors annealed in $O_2$ambient are larger than those in $N_2$ambient because samples annealed in high oxygen partial pressure produces the effective negative charges in films. The oxygen loss in $HfO_2$films was expected in forming gas annealed samples and decreased the excessive oxygen contents in films as-deposited and annealed in $O_2$ or $N_2$ambient. The CET of films after hydrogen forming gas anneal almost did not vary compared with that before hydrogen gas anneal. Hysteresis of $HfO_2$films abruptly decreased by hydrogen forming gas anneal because hysteresis in C-V characteristics depends on the bulk effect rather than $HfO_2$/Si interface. The lower trap densities of films annealed in $O_2$ambient than those in $N_2$were due to the composition of interfacial layer becoming closer to $SiO_2$with increasing oxygen partial pressure. Hydrogen forming gas anneal at $350^{\circ}C$ for samples annealed at various temperatures in $O_2$and $N_2$ambient plays critical role in decreasing interface trap densities at the Si/$SiO_2$ interface. However, effect of forming gas anneal was almost disappeared for samples annealed at high temperature (about $800^{\circ}C$) in $O_2$ or $N_2$ambient.

  • PDF

Hydrogen Peroxide Concentrations in Air in Seoul (서울시 대기 중 $H_2O_2$의 농도)

  • 강충민;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2000
  • Gas-phase hydrogen peroxide(H2O2) concentrations were measured to investigate it's distribution in the ambient air in downtown Seoul(Kwanghwamum and Mullae-dong). These measurements were made during four season, from April 30, 1998 to January 29, 1999, using Cold Trap and HPLC. Measurements were also made of other photochemical oxidants and trace gases(O3, NO2, CO and SO2) and meteorological parameters(relative humidity, temperature, solar radiation and wind speed). The mean of all observations was 0.10 ppbv and the range measured was below the level of detection(>0.01 ppbv) to 0.47ppbv. The higher seasonal mean concentrations showed during the summer(0.21 ppbv) and concentrations of H2O2 showed a diurnal variation with maximum concentrations in the afternoon(12:30∼14:00). The results from the corrrelation analysis showed that the concentration of gaseous H2O2 is strongly dependent on the other air pollutants(NO2, CO and O3) and meteorological parameters(relative humidity, temperature and solar radiation.)

  • PDF