• Title/Summary/Keyword: hydrogen sulfide oxidation

Search Result 55, Processing Time 0.02 seconds

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.

A Study on Hydrogen Impurity Effect in Anode of Proton Exchange Membrane Fuel Cell on Various Concentration of CO and H2S (고분자전해질 연료전지 연료극의 일산화탄소 및 황화수소 농도에 따른 불순물영향에 관한 연구)

  • LEE, EUN-KYUNG;BAEK, JAE-HOON;LEE, JUNG-WOON;LEE, SEUNG-KUK;LEE, YEON-JAE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.670-676
    • /
    • 2016
  • Hydrogen town in Republic of Korea was established in 2013. Hydrogen as a byproduct produced by various processes of factories is used in hydrogen town facilities. As cell performance is affected by contaminations in fuel gas, various standards about impurities of fuel have been determined by many countries. This study shows performance degradation of single cell with impurities concentrations. Traces of carbon monoxide (CO) and hydrogen sulfide ($H_2S$)can cause considerable cell performance losses. For comparing the performances by poisoning of CO, acceleration test, I-V curve, constant current are performed. Both the CO and $H_2S$ poisoning rate are a function of their concentration. With the higher concentrations the higher poisoning rates are observed. And, it was confirmed that, oxidation behavior and side reaction generation are not affected. Under the lower $H_2S$ concentration condition, the poisoning rate is much higher than that of CO because of its different adsorption intensity. It can be possible that the result of this study can be used for enacting regulation as a baseline data.

Selective Oxidation of Hydrogen Sulfide Containing Ammonia and Water Using Fe2O3/SiO2 Catalyst (Fe2O3/SiO2 촉매 상에서 물과 암모니아가 함께 존재하는 황화수소의 선택적 산화 반응)

  • Kim, Moon-Il;Lee, Gu-Hwa;Chun, Sung-Woo;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.398-402
    • /
    • 2012
  • The catalytic performance of some metal oxides in the vapor phase selective oxidation of $H_2S$ in the stream containing ammonia and water was investigated. Among the catalysts tested $Fe_2O_3/SiO_2$ was the most promising catalyst for practical application. It showed higher than 90% $H_2S$ conversion and very small amount of $SO_2$ emission over a temperature range of $240{\sim}280^{\circ}C$. The effects of reaction temperature, $O_2/H_2S$ ratio, amount of ammonia and water vapor on the catalytic activity of $Fe_2O_3/SiO_2$ were discussed to better understand the reaction mechanism. The $H_2S$ conversion showed a maximum at $260^{\circ}C$ and it decreased with increasing temperature over $280^{\circ}C$. With an increase of $O_2/H_2S$ ratio from 0.5 to 4, the conversion was slightly increased, but the selectivity to elemental sulfur was remarkably decreased. The increase of ammonia amount favored the conversion and the selectivity to elemental sulfur with a decrease in $SO_2$ production. The presence of water vapor decreased both the activity and the selectivity to sulfur, but increased the ATS selectivity.

Effects of Retention Time on the Simultaneous of Odor Removal and Sludge Solubilization Using a Non-Thermal Plasma System (저온 플라즈마와 활성슬러지 복합 공정에서 체류시간 변화가 악취 저감 및 슬러지 가용화에 미치는 영향)

  • NamGung, Hyeong-Gyu;Hwang, Hyun-Jung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.815-824
    • /
    • 2011
  • In this study, a non-thermal plasma system was employed to simultaneously remove odorous compounds and organic sludge. The system consisted of two reactors; the first one was the non-thermal plasma reactor where ozone was produced by the plasma reaction and the ozone oxidized hydrogen sulfide, the model odorous compound, and then the ozone-laden gas stream was introduced to the second reactor where wasted sludge was disintegrated and solubilized by ozone oxidation. In this study, the gas retention time (GRT) and the hydraulic retention time (HRT) were changed in the two-reactor system, and the effects of GRT and HRT on reduction efficiencies of odor and sludge were determined. As the GRT increased, the ozone concentration increased resulting in an increasing efficiency of hydrogen sulfide removal. However, the overall ozone loading rate to the second sludge reactor was the same at any GRT, which resulted in an insignificant change in sludge reduction rate. When HRTs in the sludge reactor were 1, 2, 4 hours, the sludge reduction rates were approximately 30% during the four-hour operation, while the rate increased to 70% at the HRT of 6 hours. Nevertheless, at HRTs greater than 4 hours, the solubilization efficiency was not proportionally increased with increasing specific input energy, indicating that an appropriate sludge retention time needs to be applied to achieve effective solubilization efficiencies at a minimal power consumption for the non-thermal plasma reaction.

Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber (Acidithiobacillus ferrooxidans를 고정화한 생물반응기와 흡수탑을 이용한 고농도 황화수소 제거)

  • Ryu, Hui-Uk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • To treat a waste gas containing a high strength H2S, the two-stages microbial desulfurization process that conof a bioreactor immobilized with Acidithiobacillusferrooxidans and a chemical absorption scrubber has was proposed. After 4 times repeat of batch cultures, the immobilized bioreactor has been stabilized and the rate of iron oxidation reached 0.89 kg . $m^{-3}{\cdot}m^{-1}$ at steady state. The two-stages microbial desulfurization prowas able to be operated for a long term over 54 days. The removal efficiencies of H2S were 97-99% at a space velocity of 70 h-I and a inlet concentration of 37,000 ppmv. The maximum elimination capacity of H2S was approximately 3.3 kg S . $m^{-3}{\cdot}m^{-1}$. In the bioractor, the concentrations of the $Fe^{3+}$ and the immobilzed cell were constantly maintained during the desulfurization.

Application of Non-Thermal Plasma for the Simultaneous Removal of Odor and Sludge (무기악취와 슬러지 동시처리를 위한 저온플라즈마의 적용)

  • Hwang, Hyun-Jung;Ann, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.85-92
    • /
    • 2010
  • In this study, odorous compounds emitted from various wastewater treatment were treated with using the non-thermal plasma reaction, and the effluent gas from the plasma reactor was introduced to a waste sludge reactor to achieve simultaneous sludge reduction. Hydrogen sulfide, the model odorous compound, was removed at 70% using the plasma reaction, and greater than 99% removal efficiency was observed when treated by the sludge reactor. In addition, the sludge reactor showed a high efficiency of ozone removal. As ozone reacted with sludge, oxidation with organic matters took place, and total COD decreased by 50~60% and soluble COD increased gradually. As a result, the integrated process consisting of the non-thermal plasma and the sludge reactor can be successfully applied for the simultaneous treatment of malodorous gas and waste sludge.

A Review of Photocatalytic Treatment for Various Air Pollutants

  • Reddy, P. Venkata Laxma;Kim, Ki-Hyun;Kim, Yong-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • Photocatalysis is a photochemical catalytic reaction which is a highly promising tool for the environmental cleanup process. It is very effective in treatment of environmental pollutants by its unique redox property. It has wide applications in the treatment of atmospheric pollutants (e.g., nitrogen dioxide, trichloroethylene, volatile organics, hydrogen sulfide, benzene, etc) through oxidative removal and by disinfection (aeromicro flora). In this research, the fundamental aspects of photocatalysis are described with respect to the composition of catalysts, experimental conditions (e.g., temperature, duration, etc), and interfering factors (e.g., catalyst deactivation).

Studies on the Acid Tolerance of Acetobacter sp. Isolated from Persimmon Vinegar (감식초로부터 분리한 Acetobacter sp.의 내산성에 관한 연구)

  • Sim, Kyu-Chang;Lee, Kap-Sang;Kim, Dong-Han;Ryu, Il-Hwan;Lee, Jung-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.574-581
    • /
    • 2001
  • The microbial properties and acid tolerance of the three kinds of Acetobacter sp. isolated from persimmon vinegar were investigated. Acid tolerance was also evaluated. Acetobacter sp. were gram negative, short rod, nonspore forming and motile. They reacted positively catalase, methyl red, oxidation fermentation, Voges-Proskauer and nitrate reduction tests and negative to hydrogen sulfide test and ONPG. Acetobacter sp. showed normal growth curve in Carr broth and there was no significant difference between isolates and (standard on) typical strains such as Acetobacter aceti (KCTC1010), Acetobacter liquefaciens (KCTC2804), Acetobacter diazotrophicus (KCTC 2859). Optimum temperature and initial ethanol concentration in incubation were $30^{\circ}C$ and 6%, respectively. Growth and acid production of Acetobacter sp. were suppressed by the concentration of above 4% acetic acid. The amount of $Mg^{++}$ release from Acetobacter sp. cells in medium was increased by acetic acid, and almost in the concentration of 6% acetic acid. Glycolysis by Acetobacter sp. had optimal pH about 6.0 to 7.0 and more stable in acidic condition than in alkalic. The $H^+-ATPase$ of Acetobacter sp. S-1 and S-3 showed a maximal activity between pH values of approximately 5.5 to 7.5 and 6.0 to 7.5, respectively.

  • PDF

Quantity of Ascorbic Acid in the Parts of Vegetable and Its variation by Cooking Method (상용채소의 부위에 따른 환원형 Ascorbic acid량과 조리방법에 따른 C량의 변화)

  • 강신주
    • Journal of the Korean Home Economics Association
    • /
    • v.4 no.1
    • /
    • pp.589-594
    • /
    • 1963
  • Ascorbic acid has a strong power to reduce other materials, so by using this reducing power we can analise many materials quantitatively. Dihydro-ascorbic acid is quantitatively changed into ascorbic acid under a certain condition, if reduced by hydrogen-sulfide. Dihydro-ascorbic acid also has physiolosical effect, but less effect than ascorbic acid. The effect of dihydro-ascorbic acid is regarded as a half of that of ascorbic acid. Among the analytical methods applying this theory the method using 2.6 dichlorophenol indophenol what called the method of Indophenol is used most widely; so does Hydrazine-method. But comparing these two methods the former shows a little higher rate in analytical value. Vegetable are vital sources for vitamin C. According to the report of the commitee of FAO Korean branch the amount of daily per head average intake of vitamin C is about 70mg in raw materials. Since vitamin C is easily affected by heating or oxidation in Cooking the loss is not a little. Consequntly it is regarded that the actual amount of intake will be much less than basic amount. It is therefore very important to find out that how much percent of the loss there will be in case of cooking, in order to dicide the actual amount of in take as proper nutrition for a person. Therefore this paper intended to give some help in setting a standard amount of V.C intake, by measuring the change of the V.C amount using the general cooking method and by measuring amount of V.C contained in the part of vegetable, used in Korea abundantly.

  • PDF

Development of composite catalyst for hazardrous gas treatment using the heat of aviary heating equipment (계사용 온풍기를 이용한 유해가스처리 복합촉매시스템 개발)

  • Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2779-2785
    • /
    • 2009
  • Among the livestock, chickens are raised because of the merit ingested protein in low-priced cost of production and are primary livestock increased the consumption of meat. The factors of influencing condition, odor is the most important factor. Odor substances are ammonia, amines, hydrogen sulfide and mercaptan which come from night soil. Livestock are prevented from rearing by means of these odor substances. Though the henhouse is heated using hot air type heater in the winter season, it is ventilated for the control of odor because of the increase of odor concentration. In the present work, composite catalytic system combined the existing facilities(hot air type heater) with catalytic system was developed, it could controled odor and hazardous gas using the oxidation/reduction reaction without extra operating cost. Moreover, the purpose of this work is to develop the catalysts which are cost competitive and can maximize energy efficiency. The catalysts are noble metal(Pt-Rh) and composite transition metal(Mn) type.