• Title/Summary/Keyword: hydrogen storage materials

Search Result 260, Processing Time 0.021 seconds

Hydrogenation Properties of Mg-5 wt.% TiCr10Nbx (x=1,3,5) Composites by Mechanical Alloying Process (기계적 합금화법으로 제조된 Mg-5 wt.% TiCr10Nbx (x=1,3,5) 복합재료의 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.264-269
    • /
    • 2011
  • Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develope kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). $Mg-TiCr_{10}Nb$ systems were evaluated for hydrogen kinetics by Sievert's type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

Fabrication and Evaluation of Hydorgenation Propeties on Mg8Ti2-(10, 20 wt.%)Ni Composites (Mg8Ti2-(10, 20 wt.%)Ni 수소저장합금의 제조 및 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.543-549
    • /
    • 2010
  • The hydrogen energy had recognized clean and high efficiency energy source. The research field of hydrogen energy was production, storage, application and transport. The commercial storage method was using high pressure tanks but it was not safety. However metal hydride was very safety due to high chemical stability. Mg and Mg alloys are attractive as hydrogen storage materials because of their lightweight and high absorption capacity (about 7.6 wt%). Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved. The main emphasis of this study was to find an economical manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. In order to examine their hydrogenation behavior, a Sievert's type automatic pressure-compositionisotherm (PCI) apparatus was used and experiments were performed at 423, 473, 523, 573, 623 and 673 K. The results of the thermogravimetric analysis (TGA) revealed that the absorbed hydrogen contents were around 2.5wt.% for (Mg8Ti2)-10 wt.%Ni. With an increasing Ni content, the absorbed hydrogen content decreased to 1.7 wt%, whereas the dehydriding starting temperatures were lowered by some 70-100 K. The results of PCI on (Mg8Ti2)-20 wt.%Ni showed that its hydrogen capacity was around 5.5 wt% and its reversible capacity and plateau pressure were also excellent at 623 K and 673 K.

Hydrogen Storage Using Pd Doped Mesoporous Carbon Materials (팔라듐이 담지된 중형 기공성 탄소 재료를 이용한 수소 저장)

  • Kim, Wooyoung;Kim, Dongmin;Hong, Youngteak;Kang, Taegyun;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2006
  • Two types of mesoporous carbons, CMK-3 and CMK-5, were prepared using mesoporous silica as a removable template, and their hydrogen storage capacities were evaluated. For the purpose of comparison, MWCNT (multi-walled carbon nanotubes) was selected and the adsorption of hydrogen was measured. The amount of hydrogen adsorbed on carbon materials was found to be closely related to the surface areas of carbon samples: The higher the surface area of the carbon material, the larger amount of hydrogen was adsorbed. The hydrogen storage capacity increased in the order of CMK-5 > CMK-3 > MWCNT. In addition, hydrogen storage capacity was greatly enhanced by the Pd-doping onto CMK-5. When the metallic Pd was doped on the carbon material, the adsorption amount of hydrogen via a hydrogen spill-over mechanism was crucial to the hydrogen storage capacity of Pd-doped CMK-5.

  • PDF

Surface Modification of $AB_2$ Type Hydrogen Storage Alloys by Ball Milling for Ni-MH Battery (Ni-MH 전극용 $AB_2$계 수소저장합금의 볼밀링 처리에 의한 표면개질 연구)

  • Moon, Hong-Gi;Park, Choong-Nyeon;Yoo, Joung-Hyun;Park, Chan-Jin;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.418-424
    • /
    • 2006
  • In order to improve the activation properties of the $AB_2$ type hydrogen storage alloys for Ni-MH battery, the alloy surface was modified by employing high energy ball milling. The $Zr_{0.54}Ti_{0.45}V_{0.54}Ni_{0.87}Cr_{0.15}Co_{0.21}Mn_{0.24}$ alloy powder was ball milled for various period by using the high energy ball mill. As the ball milling time increased, activation of the $AB_2$ type composite powder electrodes were enhanced regardless of additives. When the ball milling time was small discharge capacities of the $AB_2$ type composite powder electrodes increased with the milling time. On the other hand for large milling time it decreased with increasing milling time. The maximum discharge capacity was obtained by ball milling for 3-4 min.

Hydrogenation Properties of $MgH_x-V_2O_5$ Composites by Hydrogen Induced Mechanical Alloying (수소 가압형 기계적 합금화법에 의한 $MgH_x-V_2O_5$ 복합재료의 수소와 특성)

  • Jung, Mie-Won;Park, Ji-Hee;Cho, Kyoung-Won;Kim, Kyeong-Il;Choi, Jae-Ha;Kim, Sang-Hern;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • Mg and Ma-based alloys are promising hydrogen storage materials for renewable clean energy applications. It has high hydrogen storage capacity (7.6wt.%), lightweight and low economical materials. However, commercial applications of the Mg hydride are currently hindered by its high operating temperature, and very slow reaction kinetics. In this work, we are aimed at studying the hydrogenation properties of the $MgH_x-V_2O_5$ composite prepared by hydrogen induced mechanical alloying. The absorption capacity of the sample is found to be about 4.7wt.% at 623K under 3 MPa $H_2$ pressure. The absorption characteristics observed have been compared with prepared $MgH_x$.

Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites (Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.148-157
    • /
    • 2022
  • Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.

Study on the Application for Hydrogen Storage Tank of MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) Alloys Containing Excess Zr (과잉 Zr을 첨가한 MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) 합금의 수소용기 적용에 관한 연구)

  • Kang, Kil-Ku;Park, Sung-Gap;Kang, Sei-Sun;Kwon, Ho-Young
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.624-633
    • /
    • 2002
  • In order to improve the hydrogen storage capacity and the activation properties of the hydrogen storage alloys, the rare-earth metal alloy series, MmN $i_{4.5}$M $n_{0.5}$Z $r_{x}$(x=0, 0.025, 0.05, 0.1), are prepared by adding excess Zr in MmN $i_{4.5}$M $n_{0.5}$ alloy. The various parts in hydrogen storage vessel consisted of copper pipes reached the setting temperature within 4~5 minutes after heat addition, which indicated that storage vessel had a good heat conductivity required in application. The performance test on storage vessel filled with rare-earth metal alloys of 1000 gr was also conducted after hydrogen charging for 10 min at $18^{\circ}C$ under 10 atm. It showed that the average capacity of discharged hydrogen volume was found to be for $MmNi_{4.5}$ $Mn_{0.5}$ and $MmNi_{4.5}$ $Mn_{x}$ 0.5/$Zr_{samples}$ indicated that the released amount of hydrogen for this $AB_{5}$ type alloys was more than 92 % of theoretic value, and also it was found that the optimum discharging temperature for obtaining an appropriate pressure of 3 atm was determined to be $V^{\circ}C$ for $MmNi_{4.5}$ $Mn_{0.5}$$Zr_{x}$(x=0, 0.025, 0.05, 0.1) hydrogen storage alloys. The released amount of these hydrogen storage samples was 125 $\ell$ , 122.4 $\ell$ and 108.15 $\ell$/kg for $MmNi_{4.5}$ $Mn_{0.5}$ $Zr_{0.025}$ $MmNi_{4.5}$M $n_{0.5}$Z $r_{0.05}$, and MmN $i_{4.5}$ Mn_0.5$Zr_{0}$, at $70^{\circ}C$ respectively. Amount of the 2nd phases increase with increase on Zr contents in $MmNi_{4.5}$$Mn_{0.5}$ $Zr_{ 0.1}$/ alloy. This phenomenon indicates that$ ZrNi_3$ in $MmNi_{4.5}$ $Mn_{0.5}$ $Zr_{x}$ / phase, which shows the maximum storage capacity and the strong resistance to intrinsic degradation, is considered as a proper alloy for hydrogen storage. As the Zr contents increase, the activation time and the plateau pressure decreases and sloping of the plateau pressure increases.creases.eases.s.

Synthesis and Hydrogen Adsorption Properties of Porous Polymer

  • Wang, Qi;Liu, Jin;Zhang, Jing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.332-336
    • /
    • 2016
  • Three kinds of porous polymer were synthesized using a solvothermal of tri-4,4'-diphenylmethane diisocyanate (MDI-trimer) and different diamino monomers. The effects of the synthesis conditions and the monomer selection on the synthesis of porous polymer properties were studied. The results show that the synthesis of $NH_2$-containing monomer molecules smaller the microporous polymers was easy to implement; the specific surface areas of the polymers are related to the monomer ratio and the reaction time. The results show that the synthesized porous polymer had good hydrogen storage performance; the hydrogen storage ability improved with the addition of heterocyclic nitrogen.

Numerical Simulation of Hydrogen Storage System using Magnesium Hydride Enhanced in its Heat Transfer (열전달 특성이 향상된 마그네슘 수소화물을 이용한 수소저장시스템의 전산모사)

  • KIM, SANG GON;SHIM, JAE HYEOK;IM, YEON HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.469-476
    • /
    • 2015
  • The purpose of this work is to investigate main factors to design a solid-state hydrogen stroage system with magnesium hydride with 10 wt% graphite using numerical simulation tools. The heat transfer characteristic of this material was measured in order to perform the highly reliable simulation for this system. Based on the measured effective thermal conductivity, a transient heat and mass transfer simulation revealed that the total performance of hydrogen storage system is prone to depend on heat and mass transfer behaviors of hydrogen storage medium instead of its inherent kinetic rate for hydrogen adsorption. Furthermore, we demonstrate that the thermodynamic aspect between equlibrium presssure and temperature is one of key factor to design the hydrogen storage system with high performance using magnesium hydride.

Study on a Quantitative Risk Assessment of a Large-scale Hydrogen Liquefaction Plant (대형 수소 액화 플랜트의 정량적 위험도 평가에 관한 연구)

  • Do, Kyu Hyung;Han, Yong-Shik;Kim, Myung-Bae;Kim, Taehoon;Choi, Byung-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.609-619
    • /
    • 2014
  • In the present study, the frequency of the undesired accident was estimated for a quantitative risk assessment of a large-scale hydrogen liquefaction plant. As a representative example, the hydrogen liquefaction plant located in Ingolstadt, Germany was chosen. From the analysis of the liquefaction process and operating conditions, it was found that a $LH_2$ storage tank was one of the most dangerous facilities. Based on the accident scenarios, frequencies of possible accidents were quantitatively evaluated by using both fault tree analysis and event tree analysis. The overall expected frequency of the loss containment of hydrogen from the $LH_2$ storage tank was $6.83{\times}10^{-1}$times/yr (once per 1.5 years). It showed that only 0.1% of the hydrogen release from the $LH_2$ storage tank occurred instantaneously. Also, the incident outcome frequencies were calculated by multiplying the expected frequencies with the conditional probabilities resulting from the event tree diagram for hydrogen release. The results showed that most of the incident outcomes were dominated by fire, which was 71.8% of the entire accident outcome. The rest of the accident (about 27.7%) might have no effect to the population.