• 제목/요약/키워드: hydrogen storage materials

Search Result 260, Processing Time 0.027 seconds

Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment (Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상)

  • You, Jeong-Hyun;Cho, Sung-Wook;Shim, Gun-Choo;Choi, Good-Sun;Park, Choong-Nyeon;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.

Technology Trend for Non-carbon Nanomaterials Hydrogen Storage by the Patent Analysis (특허분석에 의한 비탄소계 나노재료 수소저장 기술 동향)

  • Lee, Jin-Bae;Kang, Kyung-Seok;Han, Hye-Jeong;Kim, Jong-Wook;Kim, Hae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.248-259
    • /
    • 2008
  • There are several well-known materials for the hydrogen storage such as metallic alloy, carbon nanomaterials, non-carbon nanomaterials, and compounds etc. Efficient and inexpensive hydrogen storage methods are an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources. Many researches have been widely performed for the hydrogen storage techniques and materials to improve the high storage capacity and stability. In this paper, the patents concerning the non-carbon nanomaterial hydrogen storage method were collected and analyzed. The search range was limited in the open patents of Korea(KR), Japan(JP), USA(US) and European Union(EP) from 1996 to 2007. Patents were collected by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies. and technologies.

Development of Synthesis Process for Ammonia Borane using NaBH4 as the Hydrogen Storage Materials (NaBH4를 이용한 암모니아 보란 수소 저장 소재 합성 공정 개발)

  • Choi, Ho Yun;Park, Sung Jin;Jung, Sung Jin;Baek, Jong Min;Song, Han Dock;Kim, Jong Soo;Lee, Kun Jong;Kim, Young Lae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.475-481
    • /
    • 2014
  • Ammonia borane ($NH_3BH_3$), as a source material for energy generation and hydrogen storage, has attracted growing interest due to its high hydrogen content. We have investigated the synthesis of ammonia borane from sodium borohydride ($NaBH_4$) and ammonium chloride ($NH_4Cl$) utilizing a low-temperature process. From our results, we obtained a maximum synthetic yield of 98.2% of ammonia borane complex. The diammoniate diborane (DADB) was detected in about 5~10mol% with in the solid ammonia borane by solid-state $^{11}B$-NMR analysis. The synthesized solid ammonia borane products were studied to characterize hydrogen release upon thermal dehydrogenation.

Surface modification characteristics of activated carbon fibers for hydrogen storage (수소저장용 활성탄소섬유의 표면개질 특성)

  • Kim, Shin-Dong;Kim, Ju-Wan;Im, Ji-Sun;Cho, Se-Ho;Lee, Young-Seak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2006
  • Activated carbon fibers (ACFs) with high surface area and pore volume were modified with metal Ni impregnation and fluorination and investigated hydrogen storage properties by volumetric method. Micropore volume values of ACFs obtained from surface modification with Ni impregnation and fluorination were decreased 9 and 35 %, respectively. Hydrogen storage capacities of fluorinated ACFs were slightly changed, on the other hand, that of Ni impregnated ACF was considerably increased. It means that hydrogen was not only adsorbed on ACF surface, but also on Ni metal surface by means of dissociation. Although the microphone volume of ACF modified with fluorination was decreased, its hydrogen storage were found not to be changed compared with fresh ACF. These results indicated that the surface of ACF after fluorination modification may be strongly attracted hydrogen due to high electronegativity of fluorine. Therefore, it was proven that hydrogen storage capacity was related with micropore volume and surface property of carbon materials as well as specific surface area.

Electrospun Polyacrylonitrile-Based Carbon Nanofibers and Their Hydrogen Storages

  • Kim Dong-Kyu;Park Sun Ho;Kim Byung Chul;Chin Byung Doo;Jo Seong Mu;Kim Dong Young
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2005
  • Electrospun polyacrylonitrile (PAN) nanofibers were carbonized with or without iron (III) acetylacetonate to induce catalytic graphitization within the range of 900-1,500$^{circ}C$, resulting in ultrafine carbon fibers with a diameter of about 90-300 nm. Their structural properties and morphologies were investigated. The carbon nanofibers (CNF) prepared without a catalyst showed amorphous structures and very low surface areas of 22-31 $m^{2}$/g. The carbonization in the presence of the catalyst produced graphite nanofibers (GNF). The hydrogen storage capacities of these CNF and GNF materials were evaluated through the gravimetric method using magnetic suspension balance (MSB) at room temperature and 100 bar. The CNFs showed hydrogen storage capacities which increased in the range of 0.16-0.50 wt$\%$ with increasing carbonization temperature. The hydrogen storage capacities of the GNFs with low surface areas of 60-253 $m^{2}$/g were 0.14-1.01 wt$\%$. Micropore and mesopore, as calculated using the nitrogen gas adsorption-desorption isotherms, were not the effective pore for hydrogen storage.

Hydrogen Storage Characteristics of Melt Spun Mg-23.5Ni-xCu Alloys and Mg-23.5Ni-2.5Cu Alloy Mixed with $Nb_{2}O_{5}$ and $NbF_{5}$

  • Hong, Seong-Hyeon;Kwon, Sung-Nam;Song, Myoung Youp
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.298-303
    • /
    • 2011
  • Mg-23.5 wt%Ni-xwt%Cu (x = 2.5, 5 and 7.5) samples for hydrogen storage were prepared by melt spinning and crystallization heat treatment from a Mg-23.5 wt%Ni-5 wt%Cu alloy synthesized by the gravity casting method. They were then ground under $H_2$ to obtain a fine powder. Among these samples the Mg-23.5Ni-2.5Cu sample had the highest hydriding and dehydriding rates after activation. The Mg-23.5Ni-2.5Cu sample absorbed 3.59 and 4.01 wt%H for 10 and 60 min, respectively, at 573K under 12 bar $H_{2}$. The activated 88(87.5Mg-10Ni-2.5Cu)-$5Nb_{2}O_{5}-7NbF_{5}$ sample absorbed 2.93 wt%H for 10 min, and 3.14 wt%H for 60 min at 573K under 12 bar $H_{2}$.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Development of a Cost-Effective 20K Hydrogen BET Measurement for Nanoporous Materials (나노다공체 물성 측정을 위한 극저온(20K) 수소 BET 개발 및 응용)

  • Park, Jaewoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.466-470
    • /
    • 2017
  • With the matters of climate change, energy security and resource depletion, a growing pressure exists to search for replacements for fossil fuels. Among various sustainable energy sources, hydrogen is thought of as a clean energy, and thus efficient hydrogen storage is a major issue. In order to realize efficient and safe hydrogen storage, various porous materials are being explored as solid-states materials for hydrogen storage. For those purposes, it is a prerequisite to characterize a material's textural properties to evaluate its hydrogen storage performance. In general, the textural properties of porous materials are analyzed by the Brunauer-Emmett-Teller (BET) measurement using nitrogen gas as a probe molecule. However, nitrogen BET analysis is sometimes not suitable for materials possessing small pores and surfaces with high curvatures like MOFs because the nitrogen molecule may sometimes be too large to reach the entire porous framework, resulting in an erroneous value. Hence, a smaller probe molecule for BET measurements (such as hydrogen) may be required. In this study, we describe a cost-effective novel cryostat for BET measurement that can reach temperatures below the liquefaction of hydrogen gas. Temperature and cold volume of the cryostat are corrected, and all measurements are validated using a commercial device. In this way, direct observation of the hydrogen adsorption properties is possible, which can translate directly into the determination of textural properties.

A Study on the Development of Zr-Ti-Mn-V-Ni Hydrogen Storage Alloy for Ni-MH Rechargeable Battery (Ni-MH 2차 전지용 고용량, 고성능 Zr-Ti-Mn-V-Ni계 수소저장합금의 개발에 관한 연구)

  • Kim, Dong-Myung;Jung, Jae-Han;Lee, Sang-Min;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.137-145
    • /
    • 1996
  • The Zr-based $AB_2$ type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized $AB_5$ type hydrogen storage alloys. In this work, we tried to develop the Zr-based $AB_2$ type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability.

  • PDF

Material Life Cycle Assessment of Mg-CaO-10 wt.% MWCNT Hydrogen Storage Composites (수소저장용 Mg-CaO-10 wt.% MWCNT 복합체의 물질 전과정 평가)

  • HAN, JEONG-HEUM;LEE, YOUNG-HWAN;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.220-226
    • /
    • 2019
  • Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. MWCNTs exhibit prominent catalytic effect on the hydrogen storage properties of $MgH_2$, weakening the interaction between Mg and H atoms and reducing the activation energy for nucleation of the metal phase by co-milling Mg with carbon nanotubes. Therefore, it is suggested that combining transition metals with carbon nanotubes as mixed dopants has a significant catalytic effect on the hydrogen storage properties of $MgH_2$. In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of Mg-CaO-10 wt.% MWCNTs composites manufacturing process. The software of material life cycle assessment (MLCA) was Gabi 6. Through this, environmental impact assessment was performed for each process.