• Title/Summary/Keyword: hydrogen safety system

Search Result 210, Processing Time 0.024 seconds

Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems (수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가)

  • Kim, Da-Eun;Yeom, Ji-Woong;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.

Risk Assessment for the Integrated System of Hydrogen Generation System Linked to Fuel Cell (연료전지 연계 수소추출기 통합 시스템에 대한 위험성 평가)

  • DANBEE SHIN;SEONGCHUL HONG;KWANGWON RHIE;DOOHYOUN SEO;DONGMIN LEE;TAEHUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.728-733
    • /
    • 2023
  • Efforts are continuing to change from fossil fuels used to hydrogen energy society. In order to become a hydrogen society, stable production and real-life applicability are important. As a result, hydrogen generation system linked to fuel cell are being developed. Through this, it is expected that production to power generation will be possible where desired by utilizing the existing urban gas piping network. Hydrogen generation system and hydrogen fuel cell have been subjected to risk assessment and have already been commercialized, but no risk assessment has been conducted on the integrated system linking them. Therefore, it is intended to secure its safety by conducting a risk analysis on the integrated system.

Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus (수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구)

  • Kyungjin, Kim;Jaeho, Shin;Kyeonghee, Han;Hyeon Min, Han;Jeong Min, In;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.

A study on the safety assessment of Hydrogen refueling system (수소 충전 시스템의 안전성 평가에 관한 연구)

  • Kim, Tae Hun;Oh, Young Dal;Lee, Man Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.167-173
    • /
    • 2014
  • Hydrogen energy is expanding in range for civil use together with development of pollution-free power sources recently, and it is judged that the use of hydrogen will increase more as a part of carbon dioxide reduction measures according to the Climatic Change Convention. Especially, it is thought that the securement of safety of the used dispenser will be the biggest obstacle in the use of high-pressure hydrogen because the hydrogen station is operated in a high pressure. This study found risks in the process and problems on operation by making use of HAZOP(6 kinds), a qualitative safety evaluation technique, and FMEA(5 kinds), a fault mode effect analysis, for the hydrogen charging system at a hydrogen gas station, derived 6 risk factors from HAZOP and 5 risk factors from FMEA, and prepared measures for it.

Hydrogen Industry Cycle Infrastructure Safety Analysis (수소산업 전주기 인프라시설 안전성 분석)

  • WOOIL PARK;SEULKI CHOI;INWOO LEE;SEUNGKYU KANG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.795-802
    • /
    • 2022
  • Korea is showing its appearance as a leading country in the hydrogen economy by establishing policies for revitalizing the hydrogen economy and enacting the 「Hydrogen Economy Promotion and Hydrogen Safety Management Act」 for the first time in the world. In addition, domestic hydrogen facilities are using hydrogen energy safely through world-class safety management compared to overseas advanced countries. However, in order to enhance the safety of the rapidly diversifying hydrogen industry and rapid technology development, such as the introduction of liquefied hydrogen, some institutional improvements are needed. In this regard, this paper intends to analyze the results of safety inspections on 13 representative facilities and prepare safety improvement plans to establish preemptive safety measures.

Study on the Consequence Analysis about Leakage Scenarios for Hydrogen Gas (수소가스 누출 시나리오에 따른 피해예측에 관한 연구)

  • Kim, Tae Hun;Oh, Young Dal;Lee, Man Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.159-165
    • /
    • 2014
  • For the hydrogen economy system being tried starting with the 21st century, the fields that was not dealt with so far, such as the safety measure for large leakage accidents, the safety problem at infrastructures like a hydrogen station, the safety problem in terms of automobiles depending on introduction of hydrogen cars, the safety problem in a supply for homes like fuel cells, etc., are being deeply reviewed. In order to establish a safety control system, an essential prerequisite in using and commercializing hydrogen gas as an efficient energy source, it is necessary to conduct an analysis, such as analysis of hydrogen accident examples, clarification of physical mechanisms, qualitative and quantitative evaluation of safety, development of accident interception technologies, etc. This study prepared scenarios of hydrogen gas leakage that can happen at hydrogen stations, and predicted damage when hydrogen leaks by using PHAST for this.

A Study on the Safety Enhancement of Hydrogen Tube Trailer (수소운송설비 안전성 강화 방안 고찰)

  • Woo-Il, Park;Yeong-Hun, Kim;In-Woo, Lee;Seung-Kyu, Kang
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.59-64
    • /
    • 2022
  • Currently, 787 hydrogen tube trailer are in operation as of the end of October 2022, and a maximum of 340 kg is transported in a Type 1 seamless container at a pressure of up to 200 bar. The current safety management system and facility management are in good condition, but the system and facility structure improvement are needed to strengthen safety. Accordingly, this paper simulated and analyzed an accident case that occurred on the Daejeon-Dangjin highway on December 28, 2021 during the process of expanding the supply and operation of hydrogen tube trailer according to the hydrogen energy activation policy. Based on the results, suggestions were made on how to improve the safety of hydrogen tube trailer.

A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System (알카라인 수전해 시스템 성능 특성 및 안전에 관한 연구)

  • PARK, SOON-AE;LEE, EUN-KYUNG;LEE, JUNG-WOON;LEE, SEUNG-KUK;MOON, JONG-SAM;KIM, TAE-WAN;CHEON, YOUNG-KI
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.601-609
    • /
    • 2017
  • Hydrogen is a clean, endlessly produced energy and it is easy to store and transfer. So, hydrogen is regarded as next generation energy. Among various ways for hydrogen production, the way to produce hydrogen by water electrolysis can effectively respond to fossil fuel's depletion or climate change. As interest in hydrogen has increased, related research has been actively conducted in many countries. In this study, we analyzed the performance characteristics and safety of water electrolysis system. In this study, we analyzed the performance characteristics and safety of water electrolysis system. The items for safety performance evaluation of the water electrolysis system were derived through analysis of international regulations, codes, and standards on hydrogen. Also, a prototype of the overall safety performance evaluation station was designed and developed. The demonstration test was performed with a prototype $10Nm^3/h$ class water electrolysis system that operated stably under various pressure conditions while measuring the stack and system efficiency. At 0.7MPa, the efficiency of the alkaline water electrolysis stack and the system that used in this study was 76.3% and 49.8% respectively. Through the GC analysis in produced $H_2$, the $N_2$ (5,157ppm) and $O_2$ (1,646 ppm) among Ar, $O_2$, $N_2$, CO and $CO_2$ confirmed as main impurities. It can be possible that the result of this study can apply to establish the safety standards for the hydrogen production system by water electrolysis.

Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant (복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가)

  • Hee Kyung Park;Si Woo Jung;Yoo Jeong Choi;Min Chul Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

A Study on the Improvement of Safety Instrumented Function of Hydrogen Refueling Station Considering Individual Risk (개인적 위험도를 고려한 수소충전소의 안전계장기능 향상에 관한 연구)

  • YOON SUP BYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.297-306
    • /
    • 2023
  • The frequency of fatal accidents that can occur at hydrogen refueling station was compared with the risk criterion for the general public suggested by the health and safety executive. If hydrogen refueling station meets the accident prevention facility standards presented in KGS Code FP216/217, it was confirmed that the risk of hydrogen refueling station was not at an unacceptable (intolerable) risk level. However, the risk of hydrogen refueling station due to small leak was analyzed as low as reasonably practicable. Therefore, methods for improving the safety instrumented function of hydrogen refueling station were reviewed. It was confirmed that the risk of hydrogen refueling station can be affected by the number of installed safety instrumentation system components, redundant architecture, mission time, proof test interval, etc. And methods for maintaining the risk of hydrogen refueling station at an acceptable risk level have been proposed.