• 제목/요약/키워드: hydrogen pores

검색결과 88건 처리시간 0.023초

다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화 (Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes)

  • 김낙천;김세홍;이진범;김현희;양지혜;김동원
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

팔라듐 합금 수소 분리막의 전처리에 관한 연구 (A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane)

  • 박동건;김형주;김효진;김동원
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

금속 사출성형 방식의 다공성 스테인리스 강 지지체에 형성된 팔라듐 수소 분리막의 투과 선택도 특성 (Hydrogen Perm-Selectivity Property of the Palladium Hydrogen Separation Membranes on Porous Stainless Steel Support Manufactured by Metal Injection Molding)

  • 김세홍;양지혜;임다솔;김동원
    • 한국표면공학회지
    • /
    • 제50권2호
    • /
    • pp.98-107
    • /
    • 2017
  • Pd-based membranes have been widely used in hydrogen purification and separation due to their high hydrogen diffusivity and infinite selectivity. However, it has been difficult to fabricate thin and dense Pd-based membranes on a porous stainless steel(PSS) support. In case of a conventional PSS support having the large size of surface pores, it was required to use complex surface treatment and thick Pd coating more than $6{\mu}m$ on the PSS was required in order to form pore free surface. In this study, we could fabricate thin and dense Pd membrane with only $3{\mu}m$ Pd layer on a new PSS support manufactured by metal injection molding(MIM). The PSS support had low surface roughness and mean pore size of $5{\mu}m$. Pd membrane were prepared by advanced Pd sputter deposition on the modified PSS support using fine polishing and YSZ vacuum filling surface treatment. At temperature $400^{\circ}C$ and transmembrane pressure difference of 1 bar, hydrogen flux and selectivity of $H_2/N_2$ were $11.22ml\;cm^{-2}min^{-1}$ and infinity, respectively. Comparing with $6{\mu}m$ Pd membrane, $3{\mu}m$ Pd membrane showed 2.5 times higher hydrogen flux which could be due to the decreased Pd layer thickness from $6{\mu}m$ to $3{\mu}m$ and an increased porosity. It was also found that pressure exponent was changed from 0.5 on $6{\mu}m$ Pd membrane to 0.8 on $3{\mu}m$ Pd membrane.

분말사출성형한 W-l5wt%Cu 나노복합분말의 초기소결거동 (Initial Sintering Behaviour of the Powder Injection Molded W-15wt%Cu Nanocomposite Powder)

  • 윤의식;유지훈;이재성
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.258-264
    • /
    • 1998
  • The initial sintering behaviour of the powder injection molded (PIMed) W-l5wt%Cu nanocomposite powder was investigated. The W-Cu nanocomposite powder was produced by the mechanochemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-CuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 hours in hydrogen at mosphere. The sintering behaviour was examined and discussed in terms of microstructural developments such as W-Cu aggregate formation, pore size distribution and W grain growth. The volume shrinkage of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast local densification in the PIM. Remarkable decrease of carbon and oxygen in the PIM enhanced local densification in the early stage of solid state sintering process with eliminating very fine pores less than 10 nm. In addition, such local densiflcation in the PIM is presumably responsible for mitigating of W-grain growth in the initial stage.

  • PDF

음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화 (Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis)

  • 이호석;명신우;박준영;박언주;허성준;김남인;이재훈;이재훈;정재엽;진송;이주영;이상호;김치호;최승목
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

담배필터용 흡착제에 관한 연구 제1보. 흡착제의 종류와 동공특성이 담배연기성분 제거능에 미치는 영향 (Studies on the Adsorbents for Cigarette Filter I. Effect of Pore Voume Distribution and Specific Area of Adsorbents on the Removal Efficiency of Smoke Components by Triple Filter)

  • 박태무;이영택;김성한;오영일
    • 한국연초학회지
    • /
    • 제10권1호
    • /
    • pp.75-82
    • /
    • 1988
  • Cigarettes were made using a triple filter with several porous materials in its cavity. The removal effect of the adsorbents on carbon monoxide and hydrogen cyanide in cigarette smoke was investigated with the variation of their surface area and pore volume distributions. Several attempts were made to activated coconut shell based char under the fixed steam purging rate. 1. The specific surface area increased in number of micropore. It was found for transitional pore to have a little effect on the total surface area. 2. A Small amount of the particulate matter adsorbed on the adsorbents with transitional pores, Zeolite showed a little effect on the carbon monoxide adsorption though its small pore volume, but there was no significant difference in the adsorption capacity zeolite and the others. 3. In the adsorption for hydrogen cyanide as a vapor phase in cigarette smoke, the adsorption effect of the adsorbents increased remarkably with increasing their surface area and number of micropore. It was considered that the adsorbents with small pore volume like molecular seive 4A, in which the capillary diffusion of adsorbates could not be able, would not be effective for the adsorption of hydrogen cyanide.

  • PDF

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

산화물 수소환원에 의한 W-Ni-Fe 나노복합분말의 합성과 특성 (Synthesis and Characteristics of W-Ni-Fe Nanocomposite Powder by Hydrogen Reduction of Oxides)

  • 이창우;윤의식;이재성
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.49-54
    • /
    • 2001
  • The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and $Fe_2O_3$ for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by $Fe_2O_3$ and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of $\gamma$-Ni-Fe. After reduction at 80$0^{\circ}C$ for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and $\gamma$-Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for $\gamma$-Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147$0^{\circ}C$/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.

  • PDF

Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향 (Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System)

  • 노립신;대관하;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

음이온 교환막 수전해용 Pt-Fe/카본블랙 나노 촉매 제조 및 특성 (Preparation and Characterization of Pt-Fe/Carbon Black Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis)

  • 조성국;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.715-722
    • /
    • 2022
  • Pt-Fe/carbon black nanocatalysts were prepared by spontaneous reduction reaction of Platinum(II) acetylacetonate and Iron(II) acetylacetonate in a nucleophilic solvent and they were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzer (EDS), thermogravimetric analyzer (TGA), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) surface area analysis and anion exchange membrane (AEM) water electrolysis test station. The distribution of the Pt and Fe nanoparticles on carbon black was observed by TEM, and the loading weight of Pt-Fe nanocatalysts on the carbon black was measured by TGA. Elemental ratio of Fe:Pt was estimated by EDS and it was found that elemental ratio of Pt and Fe was changed in the range of 1:0 to 0:1, and the loading weight of Pt-Fe nanoparticles on the carbon black was 5.95-6.78 wt%. Specific surface area was greatly reduced because Pt-Fe nanocatalysts blocked the pores. I-V characteristics were estimated.